USDA - NRCS Implementation of NOAA Atlas 14

NRCS Work to Implement NOAA Atlas

14

Background:

- NRCS Priority to Coordinate Nationwide to provide consistent methods for analyzing and using Atlas 14 data
- NRCS National Water Quality and Quantity Team (WQQT) assisted NRCS State Hydraulic Engineers in this work
 - WQQT had done considerable analysis of the previously released Atlas 14 volumes
 - ♦ Methods developed from their previous studies were used in WI

NRCS Work to Implement NOAA Atlas

14

NRCS Implementation of Atlas 14:

- Analyzed the Atlas 14 data using GIS
 - Developed Generalized Atlas 14 Precipitation Depths by County
 - Developed New NRCS Temporal Storm Distributions based on Atlas 14 Data
- Developed precipitation databases by County for use in NRCS Hydrology Programs

"Previous" NRCS Wisconsin Precipitation Data Use

- ◆ Technical Paper No. 40, (TP40), "Rainfall Frequency Atlas of the U.S.", 1961
- ♦ NRCS Type II Storm Distribution

Comparing New Versus Old Data

Comparing the Precipitation Depths for the New Atlas 14 versus the Old TP40 Data...

NOAA Atlas 14 Versus TP40 Data

NOAA Atlas 14 Versus TP40 Data

100-Yr, 24-Hr Precipitation Depths

NRCS Development of Precipitation Depths by

Development of Generalized Precipitation Depths by County:

- The NRCS National WQQT used GIS to analyze the Atlas 14 partial duration series based grid data and develop mean precipitation depths by County and return interval (storm frequency)
- Representative Locations for each WI County were then selected from the Atlas 14 grid data. These were selected such that the Atlas 14 precipitation depths at these (point) representative locations:
 - Equal to the County Mean for the 100-year, 24-hour precipitation
 - Within -1.0% and +1.9% (within 1 standard deviation) of the County Means for the 1-yr through 50-year, 24-hour precipitation
- Precipitation Depths for representative County locations were used in NRCS Hydrology Program Databases
- The⁴intent of using ** representative docations ** is to prepare for the intent of the prepare for the intent of the intent of the prepare for the intent of the

10-Yr, 24-Hr Precipitation Depths

Percent Change From TP40 to NOAA Atlas 14 (Representative Location)

100-Yr, 24-Hr Precipitation Depths

Percent Change From TP40 to NOAA Atlas 14 (Representative Location)

100-Yr, 24-Hr Precipitation Depths

Percent Change From TP40 to NOAA Atlas 14 (Representative Location)

Development of NRCS Temporal Distributions

From their analysis of the *previously completed* NOAA Atlas 14, Volumes, the NRCS WQQT concluded ...

- ◆ The NRCS Type II Storm distribution should not be used with NOAA Atlas 14 precipitation depths.
- ◆ The use of rainfall distributions that cover large geographic regions (such as Type II), could lead to over- or under-estimation of peak discharge

Development of NRCS Temporal

Distributions

The NRCS WQQT developed a procedure Using ArcGIS 10.0 for deriving temporal storm distributions for a wide range of climate conditions (tropical to arctic) which occur in the US.

Developed temporal storm distribution Regions for MW and SE US (Atlas 14 Volumes 7 and 8)

Based on ratios of the Atlas 14 (25-yr, 1-hr)/(25-yr, 24-hr) precipitation depths

Since these were developed for the MW and SE US, the distribution Regions were titled MSE (e.g. MSE1 through MSE6)

USDA NRCS WQQT Storm Distribution Regions - WI

NRCS WI Storm Distribution Regions - Fina

NRCS Temporal Distributions

NRCS Purpose in Nesting All Durations within the 24-hr Temporal Distribution:

◆ The storm duration producing the largest peak discharge is generally approximately equal to the time of concentration of the watershed to the design point (NRCS NEH Ch 4)

◆ Thus, the NRCS 24-hour Temporal Distribution is applicable to any watershed with a Tc less than 24

hours

Comparison of Storm Distributions

NRCS WQQT New Storm Distributions

How will the New NRCS Storm Distributions Impact Computed Peak Discharge Values?

NRCS WQQT New Storm Distributions

Impact on Peak Discharge – Initial findings

Proposed Temporal Storm Distributions

NRCS Plans in Neighboring States?

Transitioning to Atlas 14 Data Use

NRCS WI Engineers plan to start using NOAA Atlas 14 precipitation data **after** the 2014 construction season (Early 2015)

Roll-out of NRCS WI Atlas 14 Data includes:

- ♦ Release of National NRCS Hydrology Programs (EFH2, WinTR-55) with updated precipitation databases Online 2015?
- Release of updated NRCS Wisconsin Hydrology (EFH2 and TR55) spreadsheets – Online January 2015
- Release of NRCS Engineering Field Handbook, Wisconsin Supplement – Online January 2015
- Google "NRCS Wisconsin Hydrology Hydraulics" to find NRCS Wisconsin Engineering Hydrology, Hydraulics webpage, or use web address:

http://www.nrcs.usda.gov/wps/portal/nrcs/main/wi/technical/engineeri

