Instruction and reference material for performing modeling tasks in HEC-RAS.

1 Guides

Guides are intended to be short overviews of how to do something.

- Creating an Combined 1D/2D Model(see page 2)
- Export Channel Data for Terrain(see page 48)
- Re-projecting Model Geometry(see page 54)
- Creating a Terrain Dataset to Model a Flume Experiment(see page 59)
- Modeling Steep Reaches(see page 63)
- GDAL Projection File Warning(see page 68)
- Skip SRS Translation For Terrain Imports(see page 70)

A Terms of Use

Any use or reproduction of this material must be attributed to the US Army Corps of Engineers Hydrologic Engineering Center.

1.1 Creating an Combined 1D/2D Model

This document will describe the basic steps in creating an combined 1D/2D river hydraulics model in HEC-RAS. Steps for creating, refining, reviewing, and comparing to alternative plans will be discussed. This document will not provide the level of detail that you can get from the HEC-RAS User's Manual¹, HEC-RAS 2D User's Manual², or the HEC-RAS Mapper User's Manual³ and should be considered a guiding document for **typical or general** steps, guidance, and problems you might encounter in building and refining an HEC-RAS model.

- Create a New Project(see page 2)
- Base Project Data(see page 4)
- Create a New Geometry(see page 8)
- Create a 1D Geometry(see page 10)
- Create 1D Steady Flow Data(see page 16)
- Create 1D Steady Flow Plan(see page 18)
- 1D Model Evaluation and Refinement(see page 19)
- Create 1D Unsteady Flow Data(see page 24)
- Create 1D Unsteady Flow Plan(see page 27)
- Create 2D Geometry(see page 31)
- Combined Model Simulation(see page 36)
- Combined Model Evaluation and Refinement(see page 39)
- Model Sensitivity and Comparison(see page 43)
- Parameters(see page 43)

1.1.1 Create a New Project

Before you can start building an HEC-RAS model, you need to create a new project. Choose the **File** | **New Project** menu item on the main RAS interface, as shown below.

3 https://www.hec.usace.army.mil/confluence/display/RMUM/HEC-RAS+Mapper+User%27s+Manual

¹ https://www.hec.usace.army.mil/confluence/display/RASUM

² https://www.hec.usace.army.mil/confluence/display/R2DUM

HEC-RAS 6.0.1 Beta	_	×
File Edit Run View Options GIS Tools Help		
New Project		
Open Project		
Save Project		
Save Project As		
Rename Project Title		
Delete Project		
Project Summary		

Provide a name (and filename for the project).

New Project				
Title			File Name	Selected Folder Default Project Folder Documents
Combined 1D/2D	model		Combined.prj	C: \Users \q0heccta \Documents _Support \Demo
				C:\ GUSers Gouments Support Perport GISData GISData Terrain
ОК	Cancel	Help	Create Folder	🖃 c: [OS] 🗸
Set drive and pat	h, then enter a new	project title and file	name.	

A window will informed you of the unit system to be used for the project.

RAS		×
Start a new project with "Combined.prj 1D/2D model" as its title, in the "C:\Users\q0heccta\Documents_Suppo The units system will be set to "US Cust changed under the Options menu on t	rt\Demo\" Directory? omary Units" but can be	
	OK Cancel	

All project files will begin with the file name. In the example above, the model title is "Combined 1D/2D Model" and the project filename is "Combined.prj". When I create new data files (geometry, flow, plan, ...) the project name will be appended with with a suffix corresponding an enumeration for the type of file that is created.

So for this example, the following files will be created for the first of it's type.

- Project File Combined.prj
- Geometry File Combined.g01
- Steady Flow File Combined.f01
- Unsteady Flow File Combined.u01
- Plan File Combined.p01

A Plan is similar to an alternative and will be comprise of a geometry file and a flow file. A visual chart of the plan and file structure for HEC-RAS is shown below.

1.1.2 Base Project Data

RAS Mapper will be used to create the geometry for the HEC-RAS model. Click the **RAS Mapper** button from the main RAS interface.

🔚 HEC-RAS 6.0.0	-	□ ×
File Edit Run View Options GIS Tools Help		
ᄚᄝୣ୰⊴ᆂᆋൕᄬᢛᆋൔൔൔൔൕൣൕഀഀഀഀഀഀഺഄഀ൛൛൛ൕ൛ഄ൞൞൘൘ൕൕ		IN
Project:		<u> </u>
Plan:		
Geometry:		
Steady Flow:		
Unsteady Flow:		
Description:	US Cust	omary Units

Projection

Set the coordinate system for the project. The projection will be used to reproject any data that is brought into RAS Mapper. This include terrain data and land cover data when you create new datasets or background data such as shapefiles and web imagery. To set the projection, choose the **Project | Set Projection** menu item.

Select the **Browse** folder button to select an esri PRJ file. If GDAL doesn't recognize the projection, you will be provided a warning message.

🚼 RAS Mapper Options	×
Project Settings	Coordinate Reference System
Projection *	Projection File: C:\Users\g0heccta\Documents_Support\Demo\GISData\MMC Projection;
General	Projection File. C. Vosers (doneccia voocuments v_support voemo vorsibata (wimic_Projection))
Render Mode	PROJICS["USA_Contiguous_Albers_Equal_Area_Conic_USGS_version",GEOGCS ["GCS North American 1983",DATUMI"D North American 1983",SPHEROID
Mesh Tolerances	["GRS_1980",6378137.0.298.257222101]].PRIMEM["Greenwich",0.0].UNIT ["Decree".0.0174532925199433]I.PROJECTION["Abers"].PARAMETER
Global Settings	["False_Easting".0.0],PARAMETER["False_Northing".0.0],PARAMETER["Central_Meridian" 96.0],PARAMETER["Standard Parallel 1".29.5],PARAMETER
General	["Standard_Parallel_2".45.5].PARAMETER["Latitude_Of_Origin".23.0].UNIT ["Foot_US".0.3048006096012192]]
RAS Layers	Warping Method
Map Surface Fill	Default Method (GDAL Warp)
Editing Tools	C Alternate HEC-RAS Raster Warping Method
	Help me find a coordinate reference system: <u>spatialreference.org</u>
	RAS Project Units: US Customary Restore Defaults
	OK Cancel Apply

Terrain

A good HEC-RAS model requires good terrain data. Especially when it comes to a 2D model as it is much more difficult to supplement data in a 2D model compared with a 1D cross sections. To begin using ground elevation data in HEC-RAS, select the **Project | Create New RAS Terrain** menu item in RAS Mapper.

🚼 RAS M	apper	
File Pr	oject Tools Help	
Selecte	Set Projection	/
Ē.	Create New RAS Terrain	
	Create New Geometry	
	Create a New RAS Layer	•
	Manage Layer Associations	

Select the terrain model(s) of interest. Specify the parameters for the new RAS Terrain (rounding, vertical conversion) and provide a unique filename.

Set SRS	1					
Input Terrain Files (1	files)					
+ Filename			Projection	Cell Size	Rounding	Info
× base2m.tif				6.56167999999999	1/32	i
+						
+						
•						
Output Terrain File						
Output Terrain File Rounding (Precision):	1/32	▼ Create Stitches	: Г	Merge Inputs to Sing	le Raster	
	1/32 Use Input File (Default)	Create Stitches	. r	Merge Inputs to Sing	le Raster	
Rounding (Precision):	Use Input File (Default)	Create Stitches Image: Create Stitches Image: State S		Merge Inputs to Sing	le Raster	

Click the Create button. RAS Mapper will effectively import the terrain data (it creates a copy from the input dataset) based on the specified parameters. During the import process, the data will be rounded, converted, tiled (for zoom levels), and re-projected (if necessary) to the coordinate system specified.

Computation Task	hh:mm:ss	~
<pre>mporting 1 of 1: base2m.tif -> Terrain.base2m.tif</pre>		
tep 1 of 1: File detected as valid RAS GeoTiff. Copying	0	
ase2m.tif Import Complete.	0	
inal Processing: Terrain.hdf		
step 1 of 3: Creating Terrain.vrt	0	
tep 2 of 3: Creating Terrain.hdf	1	
itep 3 of 3: Creating Stitch-TIN for merging rasters (USER-SKIPPED)	0	
errain Complete	2	

When complete, there will be new files created on disk: a Terrain.hdf file that contain information RAS Mapper uses to manage the terrain data, a Terrain.vrt file that can be used to visualize the terrain data in other programs, and a Terrain.Tif for the data that was imported (multiple .tif files will be created if the user specified multiple inputs). The Terrain.hdf file will then be loaded into RAS Mapper for visualization and use.

Land Cover Data

If you have a land cover datasets for use with Manning's n values, that might be the next thing you prepare for modeling. To import a land cover dataset, select **Project | Create a New RAS Layer | Land Cover Layer**.

Add the land cover layers of interest. At this time, you can re-classify the data if desired. Enter a cell size for new raster that is created and provide a unique filename. Click **Create** to create a byte raster (integer grid) of land cover data.

Import Extents:							1
	Terrains 💌		NLCD 2016	•	Ψ.	Add Field	
Filename	Projection	Info	Naming Std.	Name Fiel	ł		
<	D_201 (Same as Project)	Cell Size: 98	42 US NLCD 2016	N/A			
-							
F I							
F I							
-							
ique Classification I	Names for Selected File		Output File				
Name Field	Classification	-	BAS Classification				
vanie Heid	NoData		NoData				
		_	NoData	0	_		
2	Cultivated Crops		Cultivated Crops	82			
	Cultivated Crops Developed, Low Intensity	y	Cultivated Crops Developed, Low Inte				
2				nsity 22			
2	Developed, Low Intensity		Developed, Low Inte	nsity 22			
2 1 1	Developed, Low Intensity Developed, Open Space		Developed, Low Inte Developed, Open Sp	ace 21 81			
2 11 13	Developed, Low Intensity Developed, Open Space Pasture/Hay	ns	Developed, Low Inte Developed, Open Sp Pasture/Hay	ace 21 81 ntensity 23			
12 12 11 13 13 14 11	Developed, Low Intensity Developed, Open Space Pasture/Hay Developed, Medium Inter	ns	Developed, Low Inte Developed, Open Sp Pasture/Hay Developed, Medium	ace 21 81 intensity 23 nsity 24			
12 11 13 14	Developed, Low Intensity Developed, Open Space Pasture/Hay Developed, Medium Inter Developed, High Intensit	ns	Developed, Low Inte Developed, Open Sp Pasture/Hay Developed, Medium Developed, High Inte	ace 21 81 intensity 23 nsity 24			
2 11 13 4 11	Developed, Low Intensity Developed, Open Space Pasture/Hay Developed, Medium Inten Developed, High Intensit Grassland/Herbaceous	ns	Developed, Low Inte Developed, Open Sp Pasture/Hay Developed, Medium Developed, High Inte Grassland/Herbaceo Deciduous Forest	nsity 22 ace 21 ntensity 23 nsity 24 us 71 41			
2 11 13 4 11	Developed, Low Intensity Developed, Open Space Pasture/Hay Developed, Medium Inten Developed, High Intensit Grassland/Herbaceous	ns	Developed, Low Inte Developed, Open Sp Pasture/Hay Developed, Medium Developed, High Inte Grassland/Herbaceo	nsity 22 ace 21 ntensity 23 nsity 24 us 71 41			
2 11 13 4 11	Developed, Low Intensity Developed, Open Space Pasture/Hay Developed, Medium Inten Developed, High Intensit Grassland/Herbaceous	ns	Developed, Low Inte Developed, Open Sp Pasture/Hay Developed, Medium Developed, High Inte Grassland/Herbaceo Deciduous Forest	nsity 22 ace 21 81 81 intensity 23 nsity 24 us 71 41 NLCD 2016		ted Output Size	

The data import will create a LandCover.hdf file for use in RAS Mapper and a LandCover.tif which holds the classification information. Once the data has been imported, it will be added to the map display in RAS Mapper.

Set Manning's n Values

To assign Manning's n Values to the land cover dataset, right-click on the land cover dataset and choose the **Edit** Land Cover Data Table.

The Classification Parameters table will open and allow you to enter an n value for each classification type.

	d Area Edits $+ \times \mathbf{b} = \mathbf{b}^{12} \mathbf{c}^{00}$	Parameter:	ManningsN
ID	Name	ManningsN	
0	NoData	99	
11	Open Water	0.028	
21	Developed, Open Space	0.035	
22	Developed, Low Intensity	0.05	
23	Developed, Medium Intensity	0.055	
24	Developed, High Intensity	0.065	
31	Barren Land Rock/Sand/Clay	0.03	
41	Deciduous Forest	0.18	
42	Evergreen Forest	0.16	
43	Mixed Forest	0.19	
52	Shrub/Scrub	0.1	
71	Grassland/Herbaceous	0.07	
81	Pasture/Hay	0.06	
82	Cultivated Crops	0.055	
90	Woody Wetlands	0.08	
95	Emergent Herbaceous Wetlan	0.07	

Classification Polygons

Land cover data can be refined using vector data on the land cover raster. The Classification Polygons are included as a child layer and can be used to reclassify the land cover data for areas where you wish to have more detailed data, such as the channel.

1.1.3 Create a New Geometry

In RAS Mapper, select the **Project | Create New Geometry** menu item.

🚟 RAS Ma	apper	
File Pro	ject Tools Help	
Selecte	Set Projection	
	Create New RAS Terrain	
	Create New Geometry	
	Create a New RAS Layer	
	Manage Layer Associations	
	Manage Layer Associations	

Provide a unique name for the geometry.

🚟 New Geometry Data		×
Enter a unique Name for the new Geometry:		
Initial Geometry		
	ОК	Cancel

Press **OK** to create a new Geometry and add iit to RAS Mapper. Layers without data are shown in grey and as you create data the layer names will turn black and the layer's symbology will be shown.

📻 RAS Mapper						
File Project Tools Help						
Selected Layer: Initial Geometry	1	Ъ 👌 🌒 🕀 н	; 20 ← → 	z 🛛 🖒 🐂 🕅	Max Min 4	
te - Features □ - ✔ Geometries						
					1	
□ Lateral Structures □ SA/2D Connections			1			
Pump Stations Boundary Condition Lines						
Reference Lines						
B □ Infiltration B □ □ Percent Impervious						
- Errors						

Once a Geometry has been added, it can then be place in editing mode to start creating model geometry.

Associate Base Data

Before you start creating model geometer, you need to associate the Terrain layer and the Land Cover layer with the Geometry. Select the **Project | Manage Associations** menu item.

Associate the **Terrain** and the **Manning's n** dataset in the dialog that is provided. Press the **Close** button when finished.

Ma	nage l	Layer As	ssociations					×
	Тур		RAS Geometry Layers	Terrain Terrain	Manning's n	Infiltration (None)	% Impervious	Sediment Bed Material Layer (None)
	deo	incury				[(totic)		
								Close

Options

There are several options available from within RAS Mapper to customize the data extraction and visualization. Access the Options from the **Tools | Options** menu item.

From the Option dialog you can set River Station unit system, elevation point filtering, RAS Layer symbology, Editing Tools, and many others.

🚼 RAS Mapper Options					×
Project Settings	Computation	Decimal Places			
Projection General *	Horizontal:	1 :	Vertical:	2 🔅	
Render Mode	XS River Stat	ions			
Mesh Tolerances	Units:	Miles	Decimal Place	s: 2 📫	
Global Settings General	Elevation Poi	nt Filtering			
RAS Layers	XS Points:	450 ÷	LS Points:	1000 🛨	
Map Surface Fill					
Editing Tools					
				Restore Defau	lts
			ОК	Cancel Ap	ply

1.1.4 Create a 1D Geometry

The first step in creating any steady or unsteady model is to create a steady, 1D model to get an understanding of the river system. Start creating the combined 1D/2D model by Editing the initial Geometry.

To start editing a geometry, select the Geometry layer of interest an click the **Start Editing** button (this button will be replaced with the **Stop Editing** button).

River

The first thing to create in a 1D model, is to digitize the river system. The River Layer is used to hold the river system. Select the Rivers Layer, and using the Add New Feature tool, create a river centerline. River centerlines are created from upstream to downstream through the main portion of the channel. To finish creating a river line, double-click the polyline. This will close the line and invoke the River and Reach Name dialog. Provide a unique river and reach name.

To add a another river, such a tributary, create another river reach.

Double-click to end the tributary on the main river. If you are close to the original river (look for the red circle at the end of the river reach), you will be asked to create a junction. In RAS, a junction signifies a location to combine (or split) flow. The steps in creating a junction are listed below.

1. Split the original river

action?
No

S. Provide a junction name window in the Junction (16 char. max) window into the Junction (16 char. max)

Junction information should be edited from the Geometric Schematic. Verify that the junctions lengths are appropriate and the desired modeling method is selected.

Bank Lines

2. Rename the new river reach

Bank Lines are used to identify the main channel conveyance from the the overbanks. Create a bank line for the left and right overbanks for each river. The bank lines will also be used for creating an Interpolation Surface that is used for mapping results. Therefore, be careful to place the bank line as precisely as possible for where flow separation from the main channel and overbanks will occur. It is often helpful to use aerial imagery to assist in locating bank lines. Obviously, refinement of this layer will be necessary as you gain insight into the river system. Example bank lines are shown in the figure below.

Flow Path Lines

Flow Path Lines are used to compute the reach lengths for the left and right overbank. The River Lines will be used to compute the reach length in the main channel. The flow path lines should follow the center-of-mass of flow in the overbank.

Cross Sections

For the 1D portions of the model create cross sections covering the entire floodplain for the range of flows to be modeled. Cross sections should be located so that they capture controlling locations along the river as well as being created close enough together to smoothly capture the changes in terrain. A handy, back of the envelop, way to think about it is that no cross section should be no farther away that how wide it is. Cross sections should be constructed in the main channel and overbanks such that they are dog-legged perpendicular to flow. Having the bank lines and flow path lines available will assist in properly laying out cross sections.

Before laying out cross sections, be sure to set the River Station units for "numbering" the cross sections. The default units are feet/meters but for large river you should choose miles/kilometers. As you layout cross sections, RAS will compute the river station for the cross section and make the river station unique. So if you place the cross sections close together, RAS Mapper will keep incrementing the number of decimal places until the river station differs from its neighbor.

🚟 RAS Mapper						
File Project Too	ls Help					
Selected Layer: Cr 🔅	Options					
	Create Cal	culated Layer		_		
initial G 🛟	Create Mu	Itiple Maps				
RAS Mapper Options						×
Project Settings	Computation	Decimal Places				
Projection General *	Horizontal:	1 🔅	Vertical:	2 :		
Render Mode	XS River Stat	ions				
Mesh Tolerances	Units:	Miles	Decimal Places:	2 🔅		
Global Settings	Elevation Poi	nt Filtering				
RAS Layers	XS Points:	450 🔅	LS Points:	1000 🛨]	
Map Surface Fill						
Editing Tools						
					Restore Defaults	3
			OK	Cance	el Apply	у

Another helpful option in RAS Mapper is to turn on the Contour Lines on the Terrain layer. The image below shows the location of cross sections on the Terrain with the river line, bank line, and contour lines.

If you want preview what the cross section will look like, use the the Cross Section Plot tool. The cross section will update each time you update a point on the cross section.

As you lay out and edit cross section locations, data will automatically be extracted. By default, River Stations will be plotted at the start of each cross section. Additional Plot Options available for the cross sections are accessed on the Layer Properties.

	n 0.05 n 0.05 n 0.07 n 0.07 1 0.39 n 0.05	List and For	E 1005 gr 005	20 - So - S
	Cross Sections - Layer Properties (Initial Geometry)		× A	092
	Visualization and Information Features Source Files		. 2	T De
	Vector	Addtional Options	· 2	500% S00%
11 1992 Comments Standard In	Point: Line: Fill:	Bank Stations Manning's n Values	n: 0.04 04-	»
n: 0.06 In: 0.05 n: 0.05 n: 0.05 n: 0.05	Label Features with Attribute Column(s) Edit	Reach Lengths Ineffective Areas Blocked Obstructions Ratio of Cut Line to XS Line		n: 0.03
n: 0.06 n: 0.05 n: 0.06 n: 0.06 n: 0.07 n: 0.06 n: 0.07 n: 0.07 n: 0.07 n: 0.07 n: 0.07	Plot Surface Update Legend with View Edit	Directional Arrows Stationing Tick Marks Draw Points Label Points	n: 0.03	n: 0.18
n: 0.03 2n: 0.03	Opacity:	Label Segment Indexes		* 0.03 p
n: 0.03	Contours / Hillshade		n: 0.08	7 n: 0.08
n: 0.04 -				5 Fn: 0.07
n: 0.05 n: 0.04	Plot Hillshade Z Factor: Edit Edit		n: 0.07	n: 0.03
5.91 ^{m.0.07} 5.99 6.08 ^{m.0.05}	Copy Symbology Paste Symbology Reset Symbology	0.78	n: 0.03	
	man	(6.55%m.00)	4 076.97 m.0.04 5 7.07 7.07	n: 0.18
And the second				

Additional Data

There are a multitude of addition 1D data you might want to create, from Ineffective Flow Areas, Blocked Obstructions, Bridges, Inline Structure, and Storage Areas. We will skip these data at this time.

Geometric Data Editor

When finished creating data in RAS Mapper, **Stop Editing** and close RAS Mapper.

Open the Geometric Data Editor from the main HEC-RAS interface.

File Edit Option: Yet Solar Solar Solar Solar Solar Point Field Image: Solar Solar Solar Solar Solar Solar Solar Point Field Point Fi	✓ Geometric Data	-		×
Part			extents for P	
Designed and the second	colors			4
Sociologi Bidg Cuba Hore Sociologi S				
Lideral Andrew Constraints of the second sec	Section			
Index Statutor Program Statutor Program Statutor Statutor Statutor				
Sources				
Tabara Sanatara	Structure			
Soucher State				
Booge Sprey Sprey Sprey Sprey Sprey Paren Mary Mary Mary Sprey	Structure			
Para Safar Safar Para Safar Para Safar Very Para Para Safar Very Para Safar Very Safar Very Safar	Storage			
Shop Shop Shop Shop Parm. Map Parm. Petrop Petrop Company Company Petrop Company Com				
Preps Station Paren Par				
Station The Param. Percure Petcre Control Control	5420 €/em D0∰			
Hithe Param Param Mitava	Station			
Picture	HTab			
	Picture			
				-
			0.7687, 0.	

Load the Geometry by selecting **File | Open Geometry Data**.

\times	Geome	etric Data					
<u>F</u> ile	Edit	<u>O</u> ptions	<u>V</u> iew	<u>T</u> ables	<u>T</u> ools	<u>G</u> IS To	ols <u>H</u> elp
	New (Geometry [)ata		2D In	BC Lines	Reference Lines F
	Open	Geometry	Data	N			i i i i i i i i i i i i i i i i i i i
	Save (Geometry [)ata	3			
	Save	Geometry [)ata As				
	Renar	ne Geomet	rv Title				

Select the geometry you were working on in RAS Mapper.

Open Geometry File				
Selected File Title	Filename			
Initial Geometry	C; Wsers\q0heccta\Documents_Support\Demo\Combined.q01			
1		ОК	Cancel	Help

You may need to complete some of the geometry such as Manning's n values, filtering cross section points, adding ineffective flow areas, etc.

When you have finished making obvious edits, close the Geometric Data Editor.

1.1.5 Create 1D Steady Flow Data

Open the Steady Flow Data Editor from the main HEC-RAS interface. Enter flow data for the range of flows you expect to model. Depending on the river system, entering a low flow like the 2-year flow can help identify the main channel and verify the location of bank stations. Entering a high flow will help you identify the entire floodplain and verify the cross section extents.

ज्ञ Steady Flow Da	ita - Steady Flow						_		\times
<u>File Options H</u>	elp								
Description :							÷	Apply	Data
Enter/Edit Number of	Profiles (32000 max)): 2	Reach B	oundary Co	nditions]			
	Loc	ations of Fl	ow Data Chan	iges					
River: River 1	-					Add Multiple			
Reach: Reach 1	▼ Ri	ver Sta.: 1	0.27	•	Add A Flow	Change Location	n		
Flow	Change Location			-	Profile N	ames and Flow Ra	ates		
River	Reach	RS	PF 1	PF 2					
1 River 1	Reach 1	10.27	5000	20000					
2 River 1	Reach 1-Lower	6.25	6000	25000					
3 Tributary	Trib Reach	4.21	1000	5000					
J									

Next, enter a downstream boundary condition. Normal depth is a quick way to enter a boundary condition. Of course, you should have extended the downstream portion of the model downstream of the main area of interest and selected a highly 1-dimensional portion of the river. First, figure out the general slope of the river. This can be done in RAS Mapper, but selecting the measure **Measure Tool** and digitizing a portion of the river. After double-clicking to end the draw, the slope will be reported.

Enter the Normal Depth Slope but click on the cell for the downstream boundary of the river and clicking the **Normal Depth** button.

Save the flow data before moving to on to create a steady flow plan.

Save Flow Data As		
Tite Steady Flow	File Name [Combined.f*	Selected Folder Default Project Folder Documents C:\Users\g0heccta\Documents_Support\Demo C:\ Users G0heccta Documents Support FonData GISData Land Classification Terrain
OK Cancel Help	Create Folder	⊒ c: [OS] _

1.1.6 Create 1D Steady Flow Plan

In order to run the HEC-RAS model, create a Steady Flow plan using the initial geometry and steady flow data. From the Steady Flow Analysis window, select Save Plan and provide a plan name. You will also be prompted for a Short ID which is used for labeling output plots.

File Options Help New Plan Short ID:	
New Plan Short ID:	
5101012.	
Open Plan Geometry	-
Save Plan	•
Save Plan As Rename Plan Title Delete Plan Exit	^
Floodplain Mapping	×
Compute	
Enter/Edit short identifier for plan (used in plan comparisons)	
Save Plan Data As	
Title File Name Selected Folder Default Project Folder Do	cuments
	cuments

Once a plan is created, you are ready to compute hydraulic results.

File Options Help		-	×
Plan: Steady Flow		Short ID: Steady Flow	
Geometry File:	Initial Geometry		 •
Steady Flow File:	Steady Flow		-
Flow Regime © Subcritical © Supercritical © Mixed Optional Programs	Plan Description		 ^
Floodplain Mapping			~
	Compute		
Enter/Edit short identifier for pla	an (used in plan comparisons)	

Compute water surface profiles by clicking the Compute button. Provided data has been adequately entered, the interface will provide status messaging during the steady flow run.

🚼 HEC-F	RAS Finished Computations			-		×
Write Geo Layer: CC	metry Information MPLETE					
Steady Flo River: Reach: Profile:	w Simulation Tributary Trib Reach PF 2	RS: Node Type:	0.53			
Simulation						
Computat	ion Messages					
Plan: 'St Simulation	eady Flow' (Combined.p01) a started at: 27Aug2021 08:36:04 AM					
2DFlowAr	eometry ea: Mesh property tables are current. d Writing Geometry					
Writing E Complete	vent Conditions d Writing Event Condition Data					
Steady	Flow Simulation HEC-RAS 6.0.0 Ma	iy 2021				
Finished S	Steady Flow Simulation					
	ations Summary					
Completin	ng Geometry ng Event Conditions ow Computations		2) 1 11 11 2			
Paus	e Take Snapshot of Results				Close	e)

After a completed run, you will be able to examine the model results and refine your model.

1.1.7 1D Model Evaluation and Refinement

Often when developing a model for a river system, the modeler comes the the river with little knowledge of how the system reacts to various flow conditions. While developing the river centerline, flow bath lines, and bank lines you can get a sense for how the river and floodplain will behave. However, the inundation depth, velocity, and boundary visualization provides a "first look" into the soul of the system. Developing the 1D river hydraulics model allows you to quickly gain an enormous amount of insight. Quickly, you will figure out just how little you actually know about the river...and how much you need to modify your initial geometry, before you develop the more complicated unsteady flow model.

Cross Section Improvements

Running the steady flow model with the range of flows is allows you to quickly identify how to improve cross section layout. Using the simulation results, you will see locations where channel banks should be adjusted,

locations to add cross sections (or remove), extend cross sections (or shorten), re-align to be perpendicular to flow, or to improve for inundation mapping.

In the below example, there are several cross sections (shown with red arrows) where the floodplain has been limited based on the cross section layout. There may be alternatives to cross section extension, however, for this example it is an appropriate improvement.

For this example, the river channels and floodplain are fairly well defined and reshaping the cross sections was not necessary to improve the model. However, there are still several locations which require improvement. As shown in the image below, there are additional locations (shown with red arrows) where the cross sections should be extended to capture the floodplain. We will improve these designated locations with a 2D Flow Area in a later step.

Inundation Mapping Improvements

There are several other locations where the inundation mapping is not correct. This is especially visible around the levee at the confluence of the rivers. Why are there problems with the inundation? HEC-RAS connects the ends of the cross sections with what are called "edge lines" and the shape of them is created based on the shape of the river and bank lines. The most downstream part of the river we can improve by adding an additional cross section.

Improving the cross section can fix many mapping issues that you may run into. However, with enough modeling you will soon find that no amount of cross section manipulation can give you the mapping results you want the model to accurately reflect the hydraulic results. Take a look at the levee system and inundation mapping inconsistencies. Even with adding the new cross section, the river-side of the levee is still dry. There are still the problems on flooding on the interior side.

To improve the inundation mapping, you have the ability to edit the Edge Lines layer (grouped under the Cross Sections Layer). When you stop editing an edge line feature, RAS will make sure that the edge lines are connected with the end of the cross sections and provide a warning message that the edge lines are going to be modified. Further, the Edge Lines layer will now be saved in the results output during the simulation.

The resulting floodplain mapping is now hydraulically correct, as shown below.

1.1.8 Create 1D Unsteady Flow Data

After creating, examining, and refining the 1D model it is time to move on to an unsteady flow model. Begin by opening the Unsteady Flow Data editor and providing unsteady flow data and boundary conditions.

For this example we have a two river, three reach system. Therefore (at a minimum), we need to specify flow hydrographs at the upstream river stations for each river and specify the downstream boundary condition. We will use the same Normal Depth boundary condition as we used in the steady flow simulation. Use the Flow Hydrograph option for each river. To add a flow data, select the cell corresponding to the river reach and click the **Flow Hydrograph** button.

Boundary Condition Types tage Hydrograph Flow Hydrograph Stage/Flow Hydr. Rating Curve Normal Depth Lateral Inflow Hydr. Uniform Lateral Inflow Groundwater Interflow S, Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Condition Location Image: Condition Location Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type Elevent to the select Boundary Condition to the select Boundary Condition type Elevent to the select Boundary Condition type Eiver Reach 10.27 Elevent to the select Boundary Condition Eiver 1 Reach 1 10.27 Elevent to the select Boundary Condition	Stage Hydrograph Flow Hydrograph Stage/Flow Hydr. Rating Curve Normal Depth Lateral Inflow Hydr. Uniform Lateral Inflow Groundwater Interflow .Sr. Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Controlled Gates Navigation Dams Image: Controlled Gates Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Image: Condition Intellet then select Boundary Condition Type River Reach RS Boundary Condition River 1 Reach 1 10.27 River 1 Reach 1 0.26 Image: Condition Intellet then Select Boundary Condition Image: Condition Intellet	Boundary Condition Types tage Hydrograph Flow Hydrograph Stage/Flow Hydr. Rating Curve Normal Depth Lateral Inflow Hydr. Uniform Lateral Inflow Groundwater Interflow S. Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Condition Location Image: Condition Location Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River Reach 10.27 River 1 Reach 1 10.27 River 1 Reach 1 10.27 River 1	Boundary Condition Types Stage Hydrograph Flow Hydrograph Stage/Flow Hydr. Rating Curve Normal Depth Lateral Inflow Hydr. Uniform Lateral Inflow Groundwater Interflow. .S. Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Condition Location Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River 1 Reach 1 10.27 River 1 River 1 Reach 1 10.26 D.26 Image: Condition Read 1 Image: Condition Read 1	Boundary Condition Types tage Hydrograph Flow Hydrograph Stage/Flow Hydr. Rating Curve Normal Depth Lateral Inflow Hydr. Uniform Lateral Inflow Groundwater Interflow S. Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Condition Location Image: Condition Location Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River Reach 10.27 River 1 Reach 1 10.27 Image: Condition Read: 1.0.26 Image: Condition Read: 1.0.26 Image: Condition Read: 1.0.26 Image: Condition Read: 1.0.26	iption:		1	Ť.	<u> </u>
Lateral Inflow Hydrograph Stage/Flow Hydr. Rating Curve Normal Depth Lateral Inflow Hydr. Uniform Lateral Inflow Groundwater Interflow S, Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Condition Location Image: Condition Location Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River Reach RS Boundary Condition tiver 1 Reach 1 10.27 Image: Condition Image: Condition	Stage Hydrograph Flow Hydrograph Stage/Flow Hydr. Rating Curve Normal Depth Lateral Inflow Hydr. Uniform Lateral Inflow Groundwater Interflow .Sr. Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Controlled Gates Navigation Dams Image: Controlled Gates Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Image: Condition Intellet then select Boundary Condition Type River Reach RS Boundary Condition River 1 Reach 1 10.27 River 1 Reach 1 0.26 Image: Condition Intellet then Select Boundary Condition Image: Condition Intellet then Select Boundary Condition Image: Condition Intellet then Select Boundary Condition	Add Boundary Condition Stage/Flow Hydr. Rating Curve Normal Depth Lateral Inflow Hydr. Uniform Lateral Inflow Groundwater Interflow S. Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Controlled Gates Navigation Dams IB Stage/Flow Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Image: Condition Condition Type River Reach RS Boundary Condition River 1 Reach 1 10.27 River 1 Reach 1 0.26 Image: Condition Type Image: Condition Type	Stage Hydrograph Flow Hydrograph Stage/Flow Hydr. Rating Curve Normal Depth Lateral Inflow Hydr. Uniform Lateral Inflow Groundwater Interflow .S. Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Controlled Gates Navigation Dams IB Stage/Flow Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River Reach Boundary Condition River 1 Reach 1 10.27 River 1 Reach 14.0ver 0.26	Add Boundary Condition Location Add SA/2D Flow Hydrograph Stage/Flow Hydr. Rating Curve Normal Depth Lateral Inflow Hydr. Uniform Lateral Inflow Groundwater Interflow S. Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Condition Location Image: Condition Location Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River Reach RS Boundary Condition River 1 Reach 1 10.27 Image: Condition Reach Reach Reach River 1 Reach 1 0.26 Image: Condition Reach Reac	ndary Conditions	Initial Conditions	Meteorolo	gical Data Observed Data	
Normal Depth Lateral Inflow Hydr. Uniform Lateral Inflow Groundwater Interflow S, Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Controlled Gates Navigation Dams Image: Controlled Gates Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River Reach RS Boundary Condition tiver 1 Reach 1 10.27 Image: Condition Image: Condition	Normal Depth Lateral Inflow Uniform Lateral Inflow Groundwater Interflow .5. Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Controlled Gates Image: Controlled Gates Image: Controlled Gates Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Flow Area Image: Controlled Gates Image: Controlled Gates Add RS Add SA/2D Flow Area Add SA/2D Area Conn Image: Controlled Gates Image: Controlled Gates Select Location in table then select Boundary Condition Type River Reach RS Boundary Condition River 1 Reach 1 10.27 Image: Controlled Gates Image: Controlled Gates Image: Controlled Gates River 1 Reach 1 10.27 Image: Controlled Gates Image: Controlled Gates	Normal Depth Lateral Inflow Uniform Lateral Inflow Groundwater Interflow S. Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Controlled Gates Image: Contro	Normal Depth Lateral Inflow Groundwater Interflow .5. Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Controlled Gates Navigation Dams IB Stage/Flow Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Flow Area Select Location in table then select Boundary Condition Type River Reach RS Boundary Condition River 1 Reach 1 10.27 Image: Condition	Normal Depth Lateral Inflow Uniform Lateral Inflow Groundwater Interflow S. Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Stage Controlled Gates Navigation Dams IB Stage/Flow Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River Reach River 1 Reach 1 10.27 River 1 Reach 1 Navigation			Boundary Co	ondition Types	
S. Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Condition Location Image: Condition Location Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River Reach RS Boundary Condition tiver 1 Reach 1 10.27 tiver 1 Reach 1.Lower 0.26	S. Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Controlled Gates Image: Controlled Gates Add Boundary Condition Location Add Boundary Condition Location Add RS Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River Reach RS Boundary Condition River 1 Reach 1 10.27 Image: Condition River 1 Reach 1 0.26 Image: Condition	S. Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Controlled Gates Image: Controlled Gates Image: Controlled Gates Add Boundary Condition Location Add Boundary Condition Location Image: Controlled Gates Image: Controlled Gates Image: Controlled Gates Add RS Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River Reach Boundary Condition River 1 Reach 1 10.27 River 1 Reach 1-Lower 0.26	S. Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Condition Location Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River Reach R5 Boundary Condition River 1 Reach 1 10.27 River 1 Reach 14.0wer 0.26	S. Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Image: Condition Location Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River Reach Boundary Condition River 1 Reach 1 10.27 River 1 Reach 1 0.26	Stage Hydrograph	Flow Hy	drograph	Stage/Flow Hydr.	Rating Curve
Rules Precipitation Add Boundary Condition Location Add RS Add SA/2D Flow Area Add SA/2D Area Conn Add RS Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River Reach Reach 1 10.27 Uiver 1 Reach 1.10wer 0.26	Rules Precipitation Image: Condition Location Add Boundary Condition Location Add RS Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River Reach RS Boundary Condition River 1 Reach 1 10.27 The select Condition River 1 Reach 1 10.26 The select Condition	Rules Precipitation Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Flow Area Select Location in table then select Boundary Condition Type River Reach River 1 Reach 1 River 1 Reach 1 River 1 Reach 1 River 1 Reach 1	Rules Precipitation Image: Condition Location Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River Reach Rs Boundary Condition River 1 Reach 1 10.27 River River 1 Reach 1-Lower 0.26	Rules Precipitation Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Flow Area Select Location in table then select Boundary Condition Type River Reach River 1 Reach 1 River 1 Reach 1 River 1 Reach 1 River 1 Reach 1	Normal Depth	Lateral In	flow Hydr.	Uniform Lateral Inflow	Groundwater Interflow
Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River Reach RS Boundary Condition tiver 1 Reach 1 10.27	Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Add SA/2D Flow Area Add SA/2D Area Conn Select Location in table then select Boundary Condition Type River Reach River 1 Reach 1 River 1 Reach 1 River 1 Reach 1 River 1 Reach 1	Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Select Location in table then select Boundary Condition Type River Reach RS Boundary Condition River 1 Reach 1 10.27 Ilo.27 River 1 Reach 1-Lower 0.26 Ilo.26	Add Boundary Condition Location Add RS Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River Reach RS Boundary Condition Type River Reach 10.27 River 1 Reach 14.0ver 0.26	Add Boundary Condition Location Add SA/2D Flow Area Add SA/2D Area Conn Add SA/2D Flow Area Add SA/2D Area Conn Select Location in table then select Boundary Condition Type River Reach River 1 Reach 1 River 1 Reach 1 River 1 Reach 1 River 1 Reach 1	.S. Gate Openings	Elev Contr	olled Gates	Navigation Dams	IB Stage/Flow
Add RS Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type Boundary Condition Type Reach RS Boundary Condition Boundary Condition uiver 1 Reach 1 10.27 Image: Condition Condition tiver 1 Reach 1.40wer 0.26 Image: Condition Condit	Add RS Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River Reach RS Boundary Condition River 1 Reach 1 10.27 River 1 Reach 1 Reach	Add RS Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River 1 Reach RS Boundary Condition River 1 Reach 1 10.27 Io.26 Io.26 Io.26	Add RS Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River Reach RS Boundary Condition River Reach 10.27 River 1 Reach 1.40ver 0.26	Add RS Add SA/2D Flow Area Add SA/2D Area Conn Add Pump Station Select Location in table then select Boundary Condition Type River 1 Reach Boundary Condition River 1 Reach 1 10.27 Reach Reach Reach River 1 Reach 1.0wer 0.26 Reach	Rules	Precip	itation		<u> </u>
Select Location in table then select Boundary Condition Type River Reach R5 Boundary Condition tiver 1 Reach 1 10.27 Interval tiver 1 Reach 1-1.0ver 0.26 Interval	Select Location in table then select Boundary Condition Type River Reach RS Boundary Condition River 1 Reach 1 10.27 International Internationa International International Internationa International	Select Location in table then select Boundary Condition Type River Reach R5 Boundary Condition River 1 Reach 1 10.27 International Internationa International International Internationa International	Select Location in table then select Boundary Condition Type River Reach RS Boundary Condition River 1 Reach 1 10.27 River 1 Reach 1 0.26	Select Location in table the select Boundary Condition Type River Reach RS Boundary Condition River 1 Reach 1 10.27 International Condition River 1 Reach 1 0.26 International Condition		Ad	ld Boundary (Condition Location	
River Reach RS Boundary Condition liver 1 Reach 1 10.27 liver 1 Reach 1-Lower 0.26	River Reach RS Boundary Condition River 1 Reach 1 10.27 International Condition River 1 Reach 1-Lower 0.26 International Condition	River Reach RS Boundary Condition River 1 Reach 1 10.27 International Condition River 1 Reach 1-Lower 0.26 International Condition	River Reach R5 Boundary Condition River 1 Reach 1 10.27 International Condition River 1 Reach 1-Lower 0.26 International Condition	River Reach RS Boundary Condition River 1 Reach 1 10.27	Add RS	Add SA/2D Fi	ow Area	Add SA/2D Area Conn	Add Pump Station
River Reach RS Boundary Condition liver 1 Reach 1 10.27 liver 1 Reach 1-Lower 0.26	River Reach RS Boundary Condition River 1 Reach 1 10.27 International Condition River 1 Reach 1-Lower 0.26 International Condition	River Reach RS Boundary Condition River 1 Reach 1 10.27 International Condition River 1 Reach 1-Lower 0.26 International Condition	River Reach R5 Boundary Condition River 1 Reach 1 10.27 International Condition River 1 Reach 1-Lower 0.26 International Condition	River Reach RS Boundary Condition River 1 Reach 1 10.27		Select Location in	n table then s	elect Boundary Condition Ty	/pe
liver 1 Reach 1-Lower 0.26	River 1 Reach 1-Lower 0.26	River 1 Reach 1-Lower 0.26	River 1 Reach 1-Lower 0.26	River 1 Reach 1-Lower 0.26					
					River	Reach	RS	Boundary Condition	
noutary (110 Reach (4.21	Indutary Indikeach (4.21	Indutary Indikeach (4.21	Inoutary Ino Reach 14.21	Indutary Indikeach 4.21	River 1	Reach 1	10.27	Boundary Condition	
					River 1 River 1	Reach 1 Reach 1-Lower	10.27 0.26	Boundary Condition	
					River 1 River 1	Reach 1 Reach 1-Lower	10.27 0.26	Boundary Condition	
						Reach 1 Reach 1-Lower	10.27 0.26	Boundary Condition	
					River 1 River 1	Reach 1 Reach 1-Lower	10.27 0.26	Boundary Condition	
					River 1 River 1	Reach 1 Reach 1-Lower	10.27 0.26	Boundary Condition	
					River 1 River 1	Reach 1 Reach 1-Lower	10.27 0.26	Boundary Condition	
					River 1 River 1	Reach 1 Reach 1-Lower	10.27 0.26		

Enter the flow hydrograph using the provided table or use a connection to a DSS file. An example hydrograph data entry is shown below.

		iver: River 1 Reach: Reach 1 R	S: 10.27
Read fro	m DSS before simulation		Select DSS file and Path
File:			
Path:			
, and the			
Enter Ta			ata time interval: 6 Hour
	nter the Data's Starting Time R		
	imulation Time: Date:	01jan2021 Time: 0000	D
C Fixed	Start Time: Date:	Time:	_
- TIXEO	Start Hille, Date,	1 nine, 1	
No. Ordi	nates Interpolate Missing	/alues Del Row Ins Ro	pw
		Hydrograph Data	
	Date	Simulation Time	Flow
	Date	(hours)	(cfs)
1	31Dec2020 2400	00:00:00	500
2	01Jan2021 0600	06:00:00	800
3	01Jan2021 1200	12:00:00	1000
4	01Jan2021 1800	18:00:00	2246.91
5	01Jan2021 2400	24:00:00	2981.31
6	02Jan2021 0600	30:00:00	3036.92
7	02Jan2021 1200	36:00:00	3069.62
8	02Jan2021 1800	42:00:00	3307.42
9	02Jan2021 2400	48:00:00	5030.33
10	03Jan2021 0600 03Jan2021 1200	54:00:00	5894.23 8097.04
12	03Jan2021 1200 03Jan2021 1800	60:00:00	9110.45
12	03Jan2021 1800	72:00:00	9279.65
14	04Jan2021 0600	72:00:00	9186.05
15	04Jan2021 1200	84:00:00	8428.44
Time Ste	p Adjustment Options ("Critica	"boundary conditions)	· · · ·
		ents to computational time step	
	Change in Flow (without char	· · ·	
Min Flow:	Multiplier: 12	EG Slope for distributing f	low along BC Line: TW Check

After entering information, always use the **Plot Data** button to verify the data entry! An example hydrograph plot is shown below.

Enter the downstream boundary by selecting the corresponding cell and clicking the **Normal Depth** button. Enter the normal depth slope as shown in the figure below and press **OK**.

Normal Depth Downstream Bou	ndary
River: River 1 Reach	: Reach 1-Lower RS: 0.26
Friction Slope:	0.0002
C2D Flow Area Boundary Condition Compute separate water surface Compute single water surface for	e elevation per face along BC Line
L	OK Cancel

Save the unsteady flow data using a useful name.

Save Unsteady F	low Data As					
Title Unsteady	Iow Data As		ile Name Combined.u™		Default Project Folder	Documents
ок	Cancel	Help	Create Folder	C: [OS]		•

You are now ready to create an unsteady flow plan and simulate.

1.1.9 Create 1D Unsteady Flow Plan

Create the initial unsteady flow plan. Most likely there will be some data that you have need to complete, which the interface should report to you, or you model will go unstable. In either case, make sure to make thoughtful decisions for the Simulation Time Window, Computational Time Step, and other Computational Options and Tolerances.

Save the plan with a descriptive name.

Save Plan Data As		
Title Unsteady	File Name Combined.p*	Selected Folder Default Project Folder Documents C:\Users\g0heccta\Documents_Support\Demo
Steady Flow	Combined.p01	C:\ C:\ Documents Support Backup GISData GISData Terrain
OK Cancel Help	Create Folder	🖃 c: [OS] 🔹
Select drive and path and enter new Title.		

Setup the unsteady flow plan with a simulation time window that is short before you try to running a long simulation. Evaluate a time step that will satisfy the courant condition. Time step selection will be based on the cross section spacing and velocities.

L Unsteady Flow Analysis	×
<u>F</u> ile <u>O</u> ptions Help	
Plan: Unsteady Short ID: Unsteady	
Geometry File: Initial Geometry	•
Unsteady Flow File: Unsteady	•
Programs to Run Plan Description	
	^
Floodplain Mapping	~
Simulation Time Window Starting Date: 01jan2021 Starting Time: 0000	
Starting Date: O1jan2021 Image: Starting Time: 0000 Ending Date: 02jan2021 Image: Starting Time: 2400	
Computation Settings	
Computation Interval: 1 Minute 💌 Hydrograph Output Interval: 1 Hour	•
Mapping Output Interval: 1 Hour Detailed Output Interval: 1 Hour	-
Project DSS Filename: C:\Users\q0heccta\Documents_Support\Demo\Combined.d	ž
Compute	

A common error when moving from a steady flow to unsteady flow simulation is to forgot to set up the hydraulic table parameters for cross sections. If the parameters are not set, HEC-RAS will report the missing data when the simulation attempts to begin.

HEC-RAS Error - Incomplete data, the following errors were found:	-	×
Ban file: C:Users/p00ecctal Documents\.Support/Demo/Combined.p02 Geometry, file: C:Users/p00ecctal Documents_Support/Demo/Combined.p01 Flow file: C:Users/p00ecctal Documents_Support/Demo/Combined.p01 Row file: Row file: Row file:		
Clipboard Print File Close		

To update the cross section table properties, select the **Hydraulic Table Parameters** button from the Geometric Data Editor. Copy the invert to the Starting Elevation column and then add a value (the default used by RAS is 0.5ft). Set the number of points to cover the full range of water surface elevations expected to be generated from the range of flows. You can evaluate the stage range by scrolling through each cross section and looking at the vertical slicing in the plot on the right side of the window.

Simulation

After pressing the Computation button, a status dialog (shown below) will provide progress and messaging during the simulation.

HEC-RAS Finished Computations					-		×
Write Geometry Information							
Layer: COMPLETE							
Geometry Processor							
	RS: 0.26						
Reach: Reach 1-Lower	Node Type: Cross !	Section					
IB Curve:							
		F	nished				
Unsteady Flow Simulation							
Simulation:							
Time: 1.0567 01JAN2021 01:04:00	Iteration (1D):	4 Iteration (2)):				
Unsteady Flow Computations							
Unsteady Post Processor							
Date/Time: 01JAN2021 0100							
	-						
Computation Messages							_
Plan: 'Unsteady' (Combined.p02)							^
Simulation started at: 20Aug2021 09:42:19 AM							
Writing Geometry							
Completed Writing Geometry							
Geometric Preprocessor HEC-RAS 6.0.0 M	2021						
debinetic rieprocessor nec-kors 0.0.0 ri	ay 2021						
Finished Processing Geometry							
Writing Event Conditions							
Completed Writing Event Condition Data							
Performing Unsteady Flow Simulation HE	-RAS 6.0.1						
Unsteady Input Summary:							
1D Unsteady Finite Difference Numerical Solut	100						
Maximum iteration location	RS	WSEL	ERROR	ITERATIONS			
01JAN2021 00:01:00 Tributary Trib R	each 0.15	449.97	3.571	20			
0134N2021 00:02:00 Tributary Trib R	each 0.15	449.97	1.712	20			
01JAN2021 00:03:00 Tributary Trib R			1.882	20			
01JAN2021 00:04:00 Tributary Trib R	each 0.21	447.59	2.071	20			
01JAN2021 00:05:00 Tributary Trib R	each 1.78	464.50	1.828	20			
0114N2021 00:06:00 River 1 Read		449.65	0.372	20			~
- Eleventer a	1						
Pause Take Snapshot of Results					1.	Close	2

If the simulation goes unstable right away, it may likely be due to initial or boundary conditions. A typical example is shown here where the instability is occurring on the tributary reach. You can see this by looking at the computation output and observing that the simulation is going to maximum iterations at the most-downstream cross section for the tributary. This is due to the combination of relatively steep tributary reach coming into the main river which has computed a very low initial water surface (see image below).

The unsteady equations are unable to solve at the junction due to poor geometric data. Bad geometric data, where the geometry is changing more rapidly than it should or is not consistent with the surrounding geometry, is often the source of model stability. For the case of junctions, HEC-RAS has an option to attempt to solve data inconsistencies. The default solution method at a junction is to force the same water surface at all cross sections. Using the method to compute the water surface elevations using an energy balance can help stabilize the model.

Junction Name Junction 1		Apply Data	Steady Flow Computation Mode Energy Momentum Add Friction
Length across Junction From: River 1 - Reach 1-Lower	Junction Length (ft)	Tributary Angle (Deg)	Add Weight
To: River 1 - Reach 1	267.72		C Force Equal WS Elevations
To: Tributary - Trib Reach	845.07		Energy Balance Method
			OK Cancel Help

Simulation after turning on the "energy balance method" allowed the run to completion.

			_		×
HEC-RAS Finished Computations					
Write Geometry Information					
ayer: COMPLETE					
Seometry Processor					
liver: River 1	RS: 0.26				
each: Reach 1-Lower	Node Type: Cross Section				
3 Curve:	Finished				
	Hinished				
nsteady Flow Simulation					
mulation:		-			
me: 48.0000 03JAN2021 00	:00:00 Iteration (1D): 0 Iteration (2D):				
Insteady Flow Computations					
nsteady Post Processor					
ate/Time: 03JAN2021 0000					
					_
Reading Unsteady Data for Post Process					^
leading Unsteady Data for Post Process					^
eading Unsteady Data for Post Process completed Reading Unsteady Data for Pos	t Process				^
Reading Unsteady Data for Post Process Completed Reading Unsteady Data for Pos	t Process				^
Reading Unsteady Data for Post Process Completed Reading Unsteady Data for Post Running Post Processor HEC-RAS 6.	t Process				^
Reading Unsteady Data for Post Process Completed Reading Unsteady Data for Post Running Post Processor HEC-RAS 6.	t Process				^
Reading Unsteady Data for Post Process Completed Reading Unsteady Data for Pos Running Post Processor HEC-RAS 6.	t Process				^
Reading Unsteady Data for Post Process. Completed Reading Unsteady Data for Pos Running Post Processor HEC-RAS 6.0 Finished Post Processing	t Process				~
Reading Unsteady Data for Post Process. Completed Reading Unsteady Data for Pos Running Post Processor HEC-RAS 6.J Finished Post Processing Computations Summary	FProcess				^
ceaning Unsteady Units for Yost Process. Completed Reading Unsteady Data for Pos Running Post Processor HEC-RAS 6.1 Finished Post Processing Computations Summary Computation Task	t Process				^
ceang Unsteady Data for host Process completed Reading Unsteady Data for Pos Running Post Processor HEC-RAS 6.1 Finished Post Processing Computation Task Computation Task Computation Task Computation Task	Process				^
Neading Unsteady Data for Yeat Process Completed Reading Unsteady Data for Pos Running Post Processor HEC-RAS 6.1 Finished Post Processing Computations Summary Computation Table Completion Table Completion Table Completion Sum Conditions	Process 1.0 May 2021 Time(htomus) 1				^
Reading Uniteracy Data for Post Process Completed Reading Uniteday Data for Pos Running Post Processor HEC-RAS 6J Finished Post Processing Computations Summary Computations Task Completing Geometry Preprocessing Geometry Preprocessing Geometry Uniteracity Flow Computations	Process				^
Neading Unitedary Data for year Hydecs. Completed Reading Unitedary Data for Pos Running Post Processor HEC-RAS 6.1 Finished Post Processing Computations Summary Computation Task Computing Geometry thy Reprocessing Geometry Reprocessing Geometry Re	Tme(hhmmiss) 1				^
Neading Unsteady Data for Post Process Completed Reading Unsteady Data for Pos Running Post Processor HEC-RAS 6.1 Finished Post Processing Computations Summary Computation Task Completing Geometry Preprocessing Geometry Completing Geometry Orgingtering Very Conditions Databady, Timo Graputations Databady, Timo Graputations Databady, Timo Graputations	Process				
Reading Uniteracy Data for Post Process Completed Reading Uniteday Data for Pos Running Post Processor HEC-RAS 6.1 Finished Post Processing Computations Summary Computation Task Completing Geometry Preprocessing Geometry Completing Geometry Preprocessing Geometry Databady Time Geometry	Time(hhmm.ss) 1 <1				
Computation Messages Accord putates/putation for Post Completed Reading Unsteady Data for Post Running Post Processor HEC-RAS 6.1 Finished Post Processing Computations Summary Computations Task Completing Funct Conditions Unsteady Flow Computations Generating Time Series Post Process Pause Take Snapchot of RA	Tme(humuss)			Close	~

Simulation results with the water surface elevation computed across the junction look acceptable.

1.1.10 Create 2D Geometry

Once the 1D unsteady flow portion of the model is running stable, only should you consider adding 2D Flow Areas.

2D Flow Areas

For this example, we are adding the a 2D mesh for the area between the river and tributary. The 2D flow area boundary should follow the cross section edge lines. When finished creating the 2D Flow Area, you will be asked to provide a name.

The 2D Flow Area editor will then be invoked. Enter a default cell size and default Manning's n value. For this example, the spatial n values will be used. **Generate Computation** points for the initial mesh. Consider starting with a large cell size and refine down to a smaller cell size as you become more comfortable with the model.

📰 2D Flow Area Editor		_		×
2D Flow Area: ZDFlowArea	1 🖄			
Computation Points Points Spacing (ft) DX: 100 DY: 100 💅	Mesh State =	Unknowr	Error	_
	Number of Ce Average Face Average Cell Maximum Cell Minimum Cell	e Length = Size = 0 Size = 0	= 0	
Generate Computation Points with All Breaklines Generate Computation Points without Breaklines	Mesh Status		ot created	
Hydraulic Cell/Face Properties				
Default Manning's n Value: 0.06	Com	pute Prop	erty Table	s
Force Mesh Recomputation			Clo	ose

The initial 2D flow area with computation points is shown in the figure below.

Lateral Structures

The 2D flow area is connected with the 1D portion of the model with lateral structures. Lateral structures should be placed along high ground at the ends of cross sections. Typically, we think of high ground as levees and roadways, but sometimes high ground can be more subtle. Another consideration with lateral structures is that if you need to know how much flow is passing over a certain location, you will need to limit the length of the lateral structure. If you are not concerned with flow accounting, you can create very long lateral structures.

Looking at the 1D unsteady flow model results will determine where to flow will move from the 1D to 2D model. Create the lateral structures in the downstream direction and RAS Mapper will pick up elevations for the weir crest from the Terrain model.

Lateral structure parameters will need to be entered from the Lateral Structure Editor. You will need to set the Tailwater Connection to the 2D Flow Area. You will also need to set the weir coefficient and verify the distance to the upstream cross section.

When you run the simulation, RAS will verify that the elevations of the lateral structure are higher than the minimum elevations of the connected 2D cells. You will receive a warning message if the lateral structure elevation is "below ground", as show below.

Write Geometry Information]		
Geometry Processor									
River: River 1	RS:	0.26							
Reach: Reach 1-Lower IB Curve:	Node Type	: Cross Section							
b curve:			Fin	ished					
Jnsteady Flow Simulation]		
Simulation:									
līme: initializing 2D Area(s)	Itera	ation (1D):	Iteration (2D)						
Unsteady Post Processor									
Date/Time:									
Computation Messages									
ERROR with Connect		each 1 6 777	,						,
ERROR with Connect The Lateral Structure has a weir elevation lower than the for 2D Area 2DFlowArea	e at River 1 Re		,					 	ŕ
ERROR with Connect The Lateral Structure has a wer elevation lower than the for 2D Area 2DFlowArea This is not allowed in HEC.RAS: Riv Sta	e at River 1 Re		Cell 611	Cell Elv 472.195	Face Po 696	sints 695			-
ERROR with Connect The Lateral Structure has a wer elevation lower than the for 2D Area 2DFlowArea This is not allowed in HEC RAS: Riv Sta River 1 Reach 16.777	e at River 1 Re cells they are connected Weir Sta	d to Weir Elv	Cell		696				,
ERROR with Connect The Lateral Structure has a weir elevation lower than the for 20 Area 2DFlowArea This is not allowed in HEC.RAS: Rive 1 Reach 16.777 River 1 Reach 16.777	e at River 1 Re cells they are connected Weir Sta 16.48	d to Weir Elv 471.601	Cell 611	472.195	696 695	695			,
ERROR with Connect The Lateral Structure has a wer elevation lower than the for 2D Area 2DFlowArea This is not allowed in HEC.RAS: Rive 1Reach 16.777 River 1Reach 16.777 River 1Reach 16.777	e at River 1 Re cells they are connected Weir Sta 16.48 18.20	Weir Elv 471.601 471.450	Cell 611 610	472.195 473.298	696 695 695	695 694			,
ERROR with Connect The Lateral Structure has a weir elevation lower than the for 2D Area 2DFlowArea This is not allowed in HEC-RAS:	e at River 1 Re cells they are connected Weir Sta 16,48 18,20 24.00	Weir Elv 471.601 471.450 471.960	Cell 611 610 610	472.195 473.298 473.298	696 695 695 695	695 694 694			,

You can manually adjust the elevations or use the Clip Weir Profile to 2D Cells button on the Lateral Structure Editor. Before doing that, however, it is a good time to filter that lateral structure elevation points. The elevation profile from the terrain many hundreds (1000 is the default in RAS Mapper), but it is likely that the profile could be adequately defined by much fewer. Fewer points will mean feature computations with the unsteady flow engine because HEC-RAS computes the water surface between each set of points along the weir profile.

The weir profile is filtered using the **Filter** button on the Lateral Weir Embankment editor, as shown below.

Lateral Weir Embankment			
Weir Data		kment Station/E t Row Dele	levation Table te Row Filter
Weir Computations: Standard Weir Egn 🔻		Station	Elevation 🔺
	1	0	478.1
Standard Weir Equation Parameters	2	43.47	477.89
Weir flow reference: Energy Grade 💌	3	83.01	478.08
Weir Coefficient (Cd) 2.	4	96.2	477.39
	5	135.74	477.16
	6	175.28	477.69
	7	201.64	477.76
Weir Crest Shape: Broad Crested	8	214.82	478.34
	9	241.15	478.52
	10	267.45	478.3
	11	306.9	478.45
	12	360.08	477.62
	13	399.9	477.4
	14	466.4	477.54
Weir Stationing Reference	15	506.31	477.96
	16	532.91	477.63
HW - Distance to Upstream XS: 100.	17	559.51	477.91
	18	592.39	477.79
	19	626.02	478.11
	20	692.53	478.08
	21	705.83	477.88
HW Connections TW Connections	22	749.61	478.69
			OK Cancel

After filtering the data, use the **Clip Weir Profile to 2D Cells** button on the Lateral Structure Editor (shown below) to ensure the weir profile is higher than the 2D cells.

	tructure Editor - Refine Options Help	edArea					-		×
River: River Reach: Read Description	h1 🔽	HW RS:	Plan Data	Levee <u></u>	+ 🕸				
Tailwater Co Type:	Right overbank nnection Storage Area/2D Flow A 2D Flow Area: 2DFlowAr		Optimization .		•	Weir Length: Centerline Length:	3334.19 3334.19		
C Normal 2D All Culverts:	Multion Method Equation Domain No Flap Gates Weir/Gates/Culverts/D		Jation) Boundary	• •	Centerline GIS Co Terrain Profile Clip Weir Profile to	• • • •		-
Gate Gate Culvert Divertion RC Outlet TS Outlet	8.78 470 490 440 440 430 500 0	500		6.67	2000	8.43 2500 30	6.32 00 350	Legenc Lat Struc Ground Bank St TW Cell Min LS Terra	a Elev
<u>ر</u>				Station (ft)					<u> </u>

1.1.11 Combined Model Simulation

After setting up the 2D portion of the model. Then carefully connect the 2D flow area to the 1D geometry. Careful inspection of overflow areas will guide you in using lateral structures to move water between the 1D and 2D domain. However, you do not need to connect the model in every location. Consider adding into the model only one lateral connection at a time.

Time Step Considerations

It is not atypical for your first 1D/2D combined model simulation to go unstable. You can see the initial run begins to iterates to the maximum iterations in the 2D cells. For this example, the 2D cells are much smaller than the distance between cross sections; therefore, we should be using a smaller timestep in for the 2D domain.

Ayer: COMPLETE And State Sametry Processor Rsi 0.26 Sametry Processor Finished Finished Interesty Flow Simulation Finished Finished Interesty Flow Computations Finished Finished Interesty Flow Computations Finished Finished Simulation Hierasty Flow Computations Finished Finished ID Unteresty Flow Flow Equation Ed. (finished) Finished Finished Situately Diffusion Hiera Equation Ed									-	×
Bioinethy Processor Rsi 0.26 Dear. R. Ree'n L. Kover Node Type: Cross Section Node Type: Cross Section B Curve: Finished Insteady Fino Smulation Interaction (DD): 20 Iteration (20): 20 Insteady Fino Smulation Interaction (DD): 20 Iteration (20): 20 Interaction (Post Processor Duratesdy Fino: Cross Section Section (DD): 20 Iteration (20): 20 Duratesdy Fino: Difference Numerical Solution 20 Interaction (DD): 20 Iteration (20): 20 Difference Viamerical Solution 20 Interaction (DD): 20 Iteration (20): 20 Solurization Section Section Section Section Section (DD): 20 Iteration (20): 20 Iteration (20): 20 Solurization Section Section Section Section Section (DD): 20 Iteration (20): 20 Iteration (20): 20 Solurization Section Section Section Section Section Section (DD): 20 Iteration (20): 20 Iteration (20): 20 Solurization Solurization (DD): 20 Difference Cell # 652 470: 20 20 Solurization (DD): 20 Difference Cell # 692 464: 18 409 20 Solurization (DD): 20 Difference Cell # 692 464: 18 4	Write Geometry Information									
Wer: River 1 RS: 0.26 Bachir Reach 1. Lower Node Type: Cross Section B Curve: Finished Instandstor: Finished The: S9.000 03.MA2021 Unsteady Flow Computations Unsteady Flow Computations Durbatedy Port Computations Display Flow Computations Display Flow Computations S9.000 Display Flow Flow Computations S9.000 Display Flow Flow Flow Flow Flow Flow Flow Flow	ayer: COMPLETE									
Basht: Readh 14.0wer Node Type: Cross Section B Curve: Finished Jastaeday Flow Smulation Finished mediator: 59.800 0.33M/2021 11:48:00 Iteration (1D): 20 Iteration (2D): 20 Interady Flow Computations Iteration (2D): 20 Iteration (2D): 20 Iteration (2D): 20 Iteration (2D): 20 Subtrately Flow Computations Iteration (2D): 20 Iteration (2D): 20 Iteration (2D): 20 Subtrately Flow Computation Messages Iteration Interaction Interactin Interactin Interaction Interactin Interaction Interaction Int	Geometry Processor									
B Curve: Finished Justeady Prov Sinulation Iteration (12): 20 Iteration (22): 20 Interactly Prov Computations Iteration (12): 20 Iteration (22): 20 Interactly Prov Computations Iteration (12): 20 Iteration (22): 20 Interactly Prov Computations Iteration (12): 20 Iteration (22): 20 Interactly Prov Computations Iteration (12): 20 Iteration (12): 20 Directed Prov Finde Ofference Numerical Solution Iteration (12): 20 Iteration (12): 20 Directed Prive Finde Ofference Numerical Solution Iteration (12): 20 Iteration (12): 20 Directed Prive Finder Ofference Numerical Solution Iteration (12): 20 Iteration (12): 20 Directed Prive Finder Ofference Numerical Solution Iteration (12): 20 Iteration (12): 20 Directed Prive Finder Oscatton R5 (or Cell) WSEL ERROR ITERATIONS Diatabasity Diffusion Wave Equation (12): 20 Iteration (12): 20 Iteration (12): 20 Iteration (12): 20 Diatabasity Diffusion (12): 20 Finder Prive The Reach 0.59 170: 52 20 Diatabasity Diffusion (12): 20 Finder Prive The Reach 0.18 470: 52	River: River 1	RS:	0.26							
Finished Jraticady Flow Simulation	Reach: Reach 1-Lower	Node Type	: Cross Section							
Junitability Prov Smulation Junitability Prov Smulation Smulation Prove Equation Science Junitability Prove Smulation Junitability Prove Smulation Res (or Cell) WSEL Packmain Iteration Scatton RS (or Cell) WSEL ERROR TIERATIONS Diametability Prove Smulation Cell # SS3 470, SS 20 Diametability Prove Smulation Cell # SS3 470, SS 20 Diametability Prove Smulation Cell # SS3 470, SS 20 Diametability Prove Smulation Cell # SS3 470, SS 20 Diametability Prove Smulation Cell # SS3 470, SS 20 Diametability Prove Smulation Cell # SS3 470, SS 20 Diametability Prove Smulation Cell	IB Curve:									
Main Constraint Constraint Initiation: Initia: Initiation: Initiation:				Fi	nished					
Main Constraint Constraint Initiation: Initia: Initiation: Initiation:	Insteady Flow Simulation									
The: \$9.8000 0.31440201 11:48:00 Iteration (ID): 20 Iteration (2D): 20 Intendedy Files Constructions Statedy Post Processor StateGy Post Post Processor StateGy Post Post Post Post Post Post Post Post										
Uniteday Post Processor Name Na		11-48-00 Itera	Non (1D): 20	Iteration (20). 20					
Justeady Post Processor Diate/Time: 03AV2021 1100 Diate/Time: 03AV2021 1100 Diate/Time: Diate/Time: Diate/Time: Diate		11.10.00 11010	0011 (20). 20	110101011(20	. 20					
Dubete/Time: 033A42021 1100 Computation Nessages Computation Nessages 10 Unstady Officiano Wave Equation Set (fasted) 10 Unstady Officiano Wave Equation Set (fasted) 10 Unstady Officiano Wave Equation Set (fasted) 10 Unstady Officiano Wave Equation Set (fasted) Attack RS (or Cell) WSEL ERROR ITERATIONS 031Av02010 18:100 ZPHowkrea Cel # S53 470:30 1.044 20 031Av02010 18:100 ZPHowkrea Cel # 691 446:16 425 20 20 031Av02011 10:100 ZPHowkrea Cel # 691 446:16 425 20 20 031Av02011 10:100 ZPHowkrea Cel # 691 446:15 0.068 20<										
Computation Research 1D Unteady Finite Difference Numerical Solution 2D Unteady Finite Difference Numerical Solution 2D Unteady Finite Difference Numerical Solution 3D Workshow Nave Equation Set (fastest) Maximum iteration location NSIAV0210 81:500 ZPHowkres Cell # 656 9314V0210 81:500 ZPHowkres Cell # 653 9314V0210 81:500 ZPHowkres Cell # 651 9314V0210 81:500 ZPHowkres Cell # 652 9314V0210 11:500 Tributary 9314V0210 11:400 Tributary 940311:1:400 Tributary 940311:1:400 Tributary 9403131:1:400 Tributary <										
ID: Unctady Free Ofference Numerical Solution 2D 2D: Unctady Diff.set 00 Wave Equation Set (fasteet) RS (or Cell) WSEL ERROR ITERATIONS D3M4020107.155:00 Tributary The Reach 0.59 472,52 0.021 2D D3M4020107.155:00 Tributary The Reach 0.59 470,52 0.021 2D D3M4020108.15:00 ZPEnwines Cel # 636 470,29 1.073 2D D3M4020108.15:00 ZPEnwines Cel # 692 444.18 4.199 2D D3M4020108.15:00 ZPEnwines Cel # 692 444.18 4.199 2D D3M4020108.15:00 ZPEnwines Cel # 692 444.18 4.199 2D D3M4020118.15:00 Tributary The Reach 0.18 471.93 0.023 2D D3M4020111.15:00 Tributary The Reach 0.18 470.92 1.073 2D D3M4020111.15:00 Tributary The Reach 0.18 470.92 2D 2D D3M4020111.15:00 Tributary The Reach 0.22 466.16 0.397 2D D3M4020111.15:00 Tributary The Reach 0.22 466.36	Date/Time: 03JAN2021 1100									
ID: Unctady Free Ofference Numerical Solution 2D 2D: Unctady Diff.set 00 Wave Equation Set (fasteet) RS (or Cell) WSEL ERROR ITERATIONS D3M4020107.155:00 Tributary The Reach 0.59 472,52 0.021 2D D3M4020107.155:00 Tributary The Reach 0.59 470,52 0.021 2D D3M4020108.15:00 ZPEnwines Cel # 636 470,29 1.073 2D D3M4020108.15:00 ZPEnwines Cel # 692 444.18 4.199 2D D3M4020108.15:00 ZPEnwines Cel # 692 444.18 4.199 2D D3M4020108.15:00 ZPEnwines Cel # 692 444.18 4.199 2D D3M4020118.15:00 Tributary The Reach 0.18 471.93 0.023 2D D3M4020111.15:00 Tributary The Reach 0.18 470.92 1.073 2D D3M4020111.15:00 Tributary The Reach 0.18 470.92 2D 2D D3M4020111.15:00 Tributary The Reach 0.22 466.16 0.397 2D D3M4020111.15:00 Tributary The Reach 0.22 466.36	Computation Messages									
2D Unstaady Diffusion Wave Equation Set (fratter!) Hoximum iteration location RS (or Cell) WSEL ERROR ITERATIONS 30340201 275:300 Tributary Trib Reach 0.59 472.52 0.021 20 30340201 275:300 ZPEnwikes Cel # 632 470.53 1.054 20 30340201 275:300 ZPEnwikes Cel # 691 466.16 4.554 20 30340201 275:300 ZPEnwikes Cel # 691 466.16 4.554 20 30340201 275:300 ZPEnwikes Cel # 691 466.16 4.554 20 30340201 275:300 ZPEnwikes Cel # 691 466.16 4.554 20 30340201 11:300 Tributary Trib Reach 0.15 471.53 0.068 20 30340201 11:300 Tributary Trib Reach 0.18 479.12 0.088 20 30340201 11:400 Tributary Trib Reach 0.18 459.12 0.28 20 30340201 11:400 Tributary Trib Reach 0.22 466.0 0.397 20 30340201 11:400 Tributa		rical Solution								
03341020107:35:00 Trbutary Trb Reach 0.99 472.52 0.021 20 033410201107:35:00 Trbutary Trb Reach 0.99 472.52 0.021 20 03341020108:100 ZPHowkres Cel # 533 470.30 1.069 20 03341020108:25:00 ZPHowkres Cel # 691 466.16 4.554 20 033410201108:100 Trbutary Trb Reach 0.18 467.35 0.029 20 03341020111:05:00 Trbutary Trb Reach 0.18 4571 0.738 20 03341020111:05:00 Trbutary Trb Reach 0.18 4571 0.738 20 03341020111:05:00 Trbutary Trb Reach 0.18 4571 0.738 20 03341020111:05:00 Trbutary Trb Reach 0.22 466.26 0.387 20 03341020111:05:00 Trbutary Trb Reach 0.22 466.78 6.819 9 Trbutary Trb Reach 0.22 468.78 6.819 9										^
03341020107:35:00 Trbutary Trb Reach 0.99 472.52 0.021 20 033410201107:35:00 Trbutary Trb Reach 0.99 472.52 0.021 20 03341020108:100 ZPHowkres Cel # 533 470.30 1.069 20 03341020108:25:00 ZPHowkres Cel # 691 466.16 4.554 20 033410201108:100 Trbutary Trb Reach 0.18 467.35 0.029 20 03341020111:05:00 Trbutary Trb Reach 0.18 4571 0.738 20 03341020111:05:00 Trbutary Trb Reach 0.18 4571 0.738 20 03341020111:05:00 Trbutary Trb Reach 0.18 4571 0.738 20 03341020111:05:00 Trbutary Trb Reach 0.22 466.26 0.387 20 03341020111:05:00 Trbutary Trb Reach 0.22 466.78 6.819 9 Trbutary Trb Reach 0.22 468.78 6.819 9	· · · ·									
033M402018:1:00 ZPHowkes Cel # 533 470.50 1.064 20 033M402018:1:00 ZPHowkes Cel # 635 470.29 1.073 20 033M402018:1:00 ZPHowkes Cel # 631 466.16 4.554 20 033M4020111:0:00 ZPHowkes Cel # 692 464.18 4.002 20 033M4020111:0:00 Tributary Trib Reach 0.18 471.53 0.068 20 033M4020111:0:00 Tributary Trib Reach 0.18 470.82 0.171 20 033M4020111:0:00 Tributary Trib Reach 0.18 497.19 0.028 20 033M4020111:0:00 Tributary Trib Reach 0.18 495.71 0.278 20 033M4020111:0:00 Tributary Trib Reach 0.22 466.12 0.028 20 033M402011:1:0:00 Tributary Trib Reach 0.22 466.12 0.029 0.02 466.10 0.037 20 033M402011:1:0:00 Tributary Trib Reach 0.02 20 0.02 0.02 0.02 0.02 0.02 0.02	Maximum iteration location		RS (or Cell)	WSEL	ERROR	ITERATIONS				
033M402018:1:00 ZPHowkes Cel # 533 470.50 1.064 20 033M402018:1:00 ZPHowkes Cel # 635 470.29 1.073 20 033M402018:1:00 ZPHowkes Cel # 631 466.16 4.554 20 033M4020111:0:00 ZPHowkes Cel # 692 464.18 4.002 20 033M4020111:0:00 Tributary Trib Reach 0.18 471.53 0.068 20 033M4020111:0:00 Tributary Trib Reach 0.18 470.82 0.171 20 033M4020111:0:00 Tributary Trib Reach 0.18 497.19 0.028 20 033M4020111:0:00 Tributary Trib Reach 0.18 495.71 0.278 20 033M4020111:0:00 Tributary Trib Reach 0.22 466.12 0.028 20 033M402011:1:0:00 Tributary Trib Reach 0.22 466.12 0.029 0.02 466.10 0.037 20 033M402011:1:0:00 Tributary Trib Reach 0.02 20 0.02 0.02 0.02 0.02 0.02 0.02	033AN2021 07:35:00 Tributary	Trib Reach	0.59	472.52	0.021	20				
033M10201108:25:00 ZPFlowkes Cel # 691 466.16 4.554 20 033M10201108:25:00 ZPFlowkes Cel # 692 464.18 4.109 20 033M10201108:25:00 ZPFlowkes Cel # 692 464.18 4.109 20 033M10201113:00 Tributary Thib Resch 0.15 471.13 0.068 20 033M1020111:30:00 Tributary Thib Resch 0.18 470.22 1.17 20 033M1020111:30:00 Tributary Thib Resch 0.18 458.71 0.278 20 033M1020111:4:500 Tributary Thib Resch 0.22 466.05 0.397 20 033M1020111:4:500 Tributary Thib Resch 0.22 466.76 6.819 9 033M102011:1:4:500 Tributary Thib Resch 0.22 463.76 6.819 9 033M102011:1:4:500 Tributary Thib Resch 0.22 463.76 6.819 9 033M10211:1:4:500 Tributary Thib Resch 0.22 463.76 6.819 9 033M10211:1:4:500 Tributary Thib Re	03JAN2021 08:11:00 2DFlowArea	Cell #	553			20				
031AH2021 109-16:00 20FlowArea Cel # 692 464.18 4.199 20 031AH2021 11:07:00 Trbutary Teb Reach 0.18 461.19 0.069 20 031AH2021 11:07:00 Trbutary Teb Reach 0.18 470.82 0.171 20 031AH2021 11:07:00 Trbutary Teb Reach 0.18 450.71 0.278 20 031AH2021 11:07:00 Trbutary Teb Reach 0.12 460.10 0.278 20 031AH2021 11:07:00 Trbutary Teb Reach 0.22 460.10 0.597 20 031AH2021 11:07:00 Trbutary Teb Reach 0.22 460.76 6.819 20 Trbutary Teb Reach 0.22 460.76 6.819 20 031AH2021 11:07:00 ZDFlowArea Cel # 585 ******** 20	03JAN2021 08:13:00 2DFlowArea	Cell #	636	470.29	1.073	20				
033HV2021115:070 Trbutary Trb Reach 0.5 46119 0.068 20 033HV2021115:070 Trbutary Trb Reach 0.18 471:93 0.029 20 033HV2021115:070 Trbutary Trb Reach 0.18 470:92 0.171 20 033HV2021115:07 Trbutary Trb Reach 0.18 458.71 0.278 20 033HV202111:4:00 Trbutary Trb Reach 0.18 458.71 0.278 20 033HV202111:4:00 Trbutary Trb Reach 0.22 465.06 0.397 20 033HV202111:4:00 Trbutary Trb Reach 0.22 465.76 6.319 9 Solution solver went unstable, Iteration 9 at 033HV202111:47:00 0.22 465.78 6.519 9 ••••• ERROR: Solution Solver Failed ••••• V	03JAN2021 08:25:00 2DFlowArea	Cell #	691	466.16	4.554	20				
033HV2021115:070 Trbutary Trb Reach 0.5 46119 0.068 20 033HV2021115:070 Trbutary Trb Reach 0.18 471:93 0.029 20 033HV2021115:070 Trbutary Trb Reach 0.18 470:92 0.171 20 033HV2021115:07 Trbutary Trb Reach 0.18 458.71 0.278 20 033HV202111:4:00 Trbutary Trb Reach 0.18 458.71 0.278 20 033HV202111:4:00 Trbutary Trb Reach 0.22 465.06 0.397 20 033HV202111:4:00 Trbutary Trb Reach 0.22 465.76 6.319 9 Solution solver went unstable, Iteration 9 at 033HV202111:47:00 0.22 465.78 6.519 9 ••••• ERROR: Solution Solver Failed ••••• V	02340/2021 08:41:00, 20ElawArea	Coll #	600	464.10	4 100	20				
03344/021113500 Tributary Trib Reach 0.18 470.59 0.039 20 30344/021113500 Tributary Trib Reach 0.18 450.71 0.278 20 30344/0201113500 Tributary Trib Reach 0.18 458.71 0.278 20 30344/0201113600 Tributary Trib Reach 0.22 460.26 0.397 20 30344/021114600 Tributary Trib Reach 0.22 460.66 0.397 20 30344/021114600 Tributary Trib Reach 0.22 460.76 6.819 9 Subdom solve went unstable, heresting 9 40334/0211147:000 ZPR/m/kres Cel # 585 ******* 20 ************************************										
0334/202111:37:00 Tributary Trib Reach 0.18 470.82 0.171 20 0334/202111:37:00 Tributary Trib Reach 0.18 498.71 0.278 20 0334/202111:46:00 Tributary Trib Reach 0.22 469.12 0.028 20 0334/202111:46:00 Tributary Trib Reach 0.22 469.05 0.397 20 0334/202111:46:00 Tributary Trib Reach 0.22 469.78 6.819 9 Solution solver went unstable, Iteration 9 at 0334/202111:47:00 20FlowArea Cell # 585 ******* 20	0310N2021 11:07:00 Tributary									
033AH2011 11:52:00 Tributary Trib Basch 0.18 453.71 0.276 20 033AH2021 11:56:00 Tributary Trib Basch 0.22 460.10 0.387 20 033AH2021 11:56:00 Tributary Trib Basch 0.22 466.16 0.597 20 Tributary Trib Basch 0.22 466.78 6.819 9 Stuton solve werk unstable, letter of a 40 J3AH2021 11:47:00 20FlowArea Cel # 585 ******** 20 ************************************										
033M/020111-4600 Tributary Trib Reach 0.22 469.12 0.038 20 033M/020111-4600 Tributary Trib Reach 0.22 466.06 0.387 20 Solution solver went unstable, iteration 9 at 033M/0201111-47:00 0.22 466.78 6.819 9 Solution solver went unstable, iteration 9 at 033M/0201111-47:00 20FlowArea Cell # 585 ******* 20	03JAN2021 11:35:00 Tributary									
033M/020111-4600 Trbutary Teb Reach 0.22 460.6 0.397 20 Soluton solve were unstable, iteration 94 033M/02011147:000 Trbutary Teb Reach 0.22 468.78 6.819 9 Soluton solve were unstable, iteration 94 033M/02011147:000 ZDRIowArea Cel # 585 ******* 20 **** ERROR: Solution Solver Failed ***	03JAN2021 11:35:00 Tributary									
Solution solver went unstable, iteration 9 at 033/M2021111:47:00 Trobustry Trob Reach 0.22 468.78 6.819 9 Solution solver went unstable, iteration 9 at 033/M2021111:47:00 20FlowArea Cell # 585 ******* 20 **** ERROR: Solution Solver Failed **** v		Trib Reach	0.18	470.82	0.171	20				
Tributary Trib Reach 0.22 468.78 6.819 9 Solution solver went unstable, iteration 9 at 03JAV0221 11:47:00 20Flow Area Cell # 585 ******** 20 **** ERROR: Solution Solver Failed **** Y	03JAN2021 11:35:00 Tributary 03JAN2021 11:37:00 Tributary 03JAN2021 11:39:00 Tributary 03JAN2021 11:44:00 Tributary	Trib Reach Trib Reach Trib Reach	0.18 0.18 0.22	470.82 458.71 469.12	0.171 0.278 0.028	20 20 20				
Solution solver went unstable, iteration 9 at 03.1AV2021 11:47:00 20FlowArea Cell # 585 ******* 20 **** ERROR: Solution Solver Failed **** V	03JAN2021 11:35:00 Tributarý 03JAN2021 11:37:00 Tributary 03JAN2021 11:39:00 Tributary 03JAN2021 11:44:00 Tributary 03JAN2021 11:46:00 Tributary	Trib Reach Trib Reach Trib Reach Trib Reach	0.18 0.18 0.22 0.22	470.82 458.71 469.12	0.171 0.278 0.028	20 20 20				
**** ERROR: Solution Solver Failed ****	03JAN2021 11:35:00 Tributary 03JAN2021 11:37:00 Tributary 03JAN2021 11:39:00 Tributary 03JAN2021 11:44:00 Tributary 03JAN2021 11:46:00 Tributary 03JAN2021 11:46:00 Tributary 50Jution solver went unstable, iteration	Trib Reach Trib Reach Trib Reach Trib Reach 9 at 03JAN2021 11:	0.18 0.18 0.22 0.22 47:00	470.82 458.71 469.12 466.06	0.171 0.278 0.028 0.397	20 20 20 20				
	03JAN2021 11:35:00 Tributary 03JAN2021 11:37:00 Tributary 03JAN2021 11:37:00 Tributary 03JAN2021 11:49:00 Tributary 03JAN2021 11:49:00 Tributary 03JAN2021 11:49:00 Tributary Solution solver went unstable, iteration Tributary	Trib Reach Trib Reach Trib Reach Trib Reach 9 at 03JAN2021 11: Trib Reach	0.18 0.18 0.22 0.22 47:00 0.22	470.82 458.71 469.12 466.06 468.78	0.171 0.278 0.028 0.397 6.819	20 20 20 20 9				
	03JAN2021 11:35:00 Tributary 03JAN2021 11:37:00 Tributary 03JAN2021 11:39:00 Tributary 03JAN2021 11:44:00 Tributary 03JAN2021 11:44:00 Tributary 03JAN2021 11:46:00 Tributary Solution solver went unstable, iteration Tributary	Trib Reach Trib Reach Trib Reach Trib Reach 9 at 03JAN2021 11: Trib Reach	0.18 0.18 0.22 0.22 47:00 0.22	470.82 458.71 469.12 466.06 468.78	0.171 0.278 0.028 0.397 6.819	20 20 20 20 9	******	20		
	033AN2021 11:35:00 Tributary 033AN2021 11:37:00 Tributary 033AN2021 11:39:00 Tributary 033AN2021 11:39:00 Tributary 033AN2021 11:44:00 Tributary Solution solver went unstable, iteration Tributary Solution solver went unstable, iteration	Trib Reach Trib Reach Trib Reach Trib Reach 9 at 03JAN2021 11: Trib Reach 9 at 03JAN2021 11:	0.18 0.18 0.22 0.22 47:00 0.22	470.82 458.71 469.12 466.06 468.78	0.171 0.278 0.028 0.397 6.819	20 20 20 20 9	******	20		*

A smaller time step is achieved using Time Slices option, located in the 2D Flow Computation Option and Tolerances.

Use Coriolis Effects (not used with Diffusion Wave	equation)	
Parameter	(Default)	2DFlowArea
Theta (0.6-1.0) Theta Warmup (0.6-1.0)	1	1
Water Surface Tolerance [max=0.2](ft)	0.01	0.01
Volume Tolerance (ft)	0.01	0.01
Maximum Iterations	20	20
Equation Set	Diffusion Wave	Diffusion Wave
Initial Conditions Time (hrs)	Sindson wave	Sinddon wave
Initial Conditions Ramp Up Fraction (0-1)	0.1	0.1
Number of Time Slices (Integer Value)	1	5
Turbulence Model	None	None
Longitudinal Mixing Coefficient	0.3	0.3
Transverse Mixing Coefficient	0.1	0.1
Smagorinsky Coefficient	0.05	0.05
Boundary Condition Volume Check		
Latitude for Coriolis (-90 to 90)		
Solver Cores	All Available	All Available
Matrix Solver	PARDISO (Direct)	PARDISO (Direct)
Convergence Tolerance		
Minimum Iterations		
Maximum Iterations		
Restart Iteration	10	10
Relaxation Factor	1.3	1.3
SOR Preconditioner Iterations	10	10

Lateral Structure Parameters

If you continue to have issues with stability (reaching max iterations at cross sections), consider the Weir Flow stability factor.

eneral 2D Flow Options 1D/2D Options Advanced Tim	e Step Control	1D Mixed Flow Options	
Theta [implicit weighting factor] (0.6-1.0): Theta final factor] (0.6-1.0): Theta for warm up [implicit weighting factor] (0.6-1.0): Water surface calculation tolerance [max=0.2](ft): Storage Area elevation tolerance [max=0.2](ft): Flow calculation tolerance [optional] (cfs): Max error in water surface solution (Abort Tolerance)(ft): Maximum number of iterations (0-40): Maximum iterations without improvement (0-40):	1. 1. 0.02 0.02 100. 20	Number of warm up time steps (0 - 100,000): Time step during warm up period (irrs): Minimum time step for time slicing (irrs): Maximum number of time slices: Lateral Structure flow stability factor (1.0-3.0): Inline Structure flow stability factor (1.0-3.0): Weir flow submergence decay exponent (1.0-3.0): Gate flow submergence decay exponent (1.0-3.0): Gravity (ft/s^2):	0 0 20 1. 1. 1. 1. 32.174
Wind Forces Reference Frame: Eulerian Drag Formulation: Hsu (1988) Geometry Preprocessor Options Family of Rating Curves for Internal Boundaries © Use existing internal boundary tables when possible. © Recompute at all internal boundaries	V	D Numerical Solution Finite Difference (classic HEC-RAS methodology) Finite Difference Matrix Solver	

In our case, after the model became fairly stable, we still had a Volume Accounting that was in error.

HEC-RAS Finished Computations		×
Write Geometry Information Layer: COMPLETE		
Ceanetry Processor River: River1 RS: 0.25 Reach: Reach Likower Node Type: Cross Section		
IB Curve: Finished		
Unsteady Flow Smulation Simulation:		
Time: 144.0000 07JAN2021 00:00:00 Iteration (1D): 1 Iteration (2D): 3 Unsteady Flow Computations 3		
Unsteady Post Processor Date/Time: 07JAN2021 0000		
Computation Messages		
Finished Processing Geometry Writing Event Conditions Completed Writing Event Conditions Data		^
Performing Unsteady Flow Simulation HEC-RAS 6.0.1		
Unsteady Input Summary: ID Unsteady Finite Difference Numerical Solution IZ Unsteady (Titalian Wave Equation Set (fastest)		
Overall Volume Accounting Error in Acre Feets 31014. Overall Volume Accounting Error as percentage: 3.361 Resear evelwer "Compatitional Log For claustif for Volume accounting details		
Writing Results to DSS		
Finished Unsteady Flow Simulation		
Reading Unsteady Data for Post Process Comoleted Reading Unsteady Data for Post Process		~
Pause Take Snapshot of Results	Clos	e)

Further, consider how the terrain and flow is interacting. Is the high ground along the lateral structure actually working like a levee? Lowering the weir coefficient can be used to dampen the effect of flow leaving the river system. After looking at the flow depths and terrain in detail around lateral structure on the tributary reach, we see flow really isn't controlled like a weir, it is more like overland flow. For the lateral structure in question, change the Overflow Computation Method to the Normal 2D Equation.

Changing the computational method results in fewer iterations, a model that runs faster, and a smaller volume accounting error.

IEC-RAS Finished Computations	-		×
Write Geometry Information Layer: COMPLETE			
Geometry Processor Rever Rever Rever Rever Read: Read-licover Node Type: Cross Section BCurve: Index			
IB Curve: Finished			
Unsteady Flow Simulation Simulation:			
Time: 144.0000 07JAN2021 00:00:00 Iteration (ID): 0 Iteration (2D): 0 Unsteady Flow Computations			
Unsteady Post Processor Date/Time: 07JAN2021 0000			
Computation Messages			
Performing Unsteady Flow Simulation HEC-RAS 6.0.1 Unsteady Input Summary: 1D Unsteady Finite Difference Numerical Solution 2D Unsteady Diffusion Wave Equation Set (fastest)			
Overall Volume Accounting Error in Arcz Feet: 9074, Overall Volume Accounting Error as percentage: 0.5935 Please review: Computational Log File" output for volume accounting details			
Writing Results to DSS			
Finished Unsteady Flow Simulation			
Reading Unsteady Data for Post Process Completed Reading Unsteady Data for Post Process			
Running Post Processor HEC-RAS 6.0.0 May 2021			~
Pause Take Snapshot of Results		Clos	e)

To further improve the volume accounting, we could decrease the timestep which would result in less flow being moved from the 1D domain to the 2D mesh during a single timestep. However, smaller timesteps will result in longer model run times.

1.1.12 Combined Model Evaluation and Refinement

After achieving model stability with the initial combined model, we can visualize results and get a handle on the system performance and resulting inundation. In the below image, we can see area where we should have included lateral structures to connect the floodplain to the river at the upstream end of the 2D flow area.

Continue to add lateral structures where appropriate to model the movement of water in the river system. In the image below, you can see we have added two more lateral structures to allow water to move into the 2D flow area. Be sure to complete all of data for each lateral structure. This includes selecting the headwater location, tailwater location, filtering the elevation profile, selecting a weir equation coefficient, selecting the modeling method, and verifying the headwater distance to the upstream cross section. You will also need to verify that the weir profile is higher than minimum elevation of the neighboring cells.

Evaluate the resultant floodplain for areas of improvement. This can be done using the various output plots in HEC-RAS and map output in RAS Mapper. Take a look at the inundation extent. Animate through the simulation profiles and look for discrepancies in how the water is moving through the system. Evaluating the courant number and velocities will provide insight to the current solution.

Courant Number

Plotting the courant number will help provide further understanding on the interaction of the selected timestep with the cross section spacing and the time slicing for the 2D flow area. Striving for a courant number near 1.0 is a noble effort, but can rarely be achieved for the entire model. If you identify particularly sensitive areas to the selected timestep, reduce and rerun.

Velocities

The velocity map is ideal map for gaining insight to the river and floodplain. Create a velocity map and animate through the profiles. Pay special attention to high velocity locations or where velocities change rapidly.

Not that if you plot the Max velocity, you will not get the a map that looks like any of the profiles that you animated through. This is because the maximum velocity is output separately from the data export at the "Mapping Output Interval" specified on the Unsteady Flow Data Editor. Investigate the max velocities to identify if it is the result of model instability or if the output interval did not catch the higher velocity. For the example shown below, the max velocity is reporting very high velocities near structures that are overtopped (that are not shown in the animation of the output). This is most likely due due to the diffusion wave solver struggling to solve for a stable solution just as the structure is overtopped.

Make a run with the model, setting the mapping output equal to the time step. This will plot all of the computed results and allow you to see values that may have been skipped over. Zooming into the high velocity region, you can see the model is going unstable. Below is a depth plot for one of the cells showing how the depth is flipping between wet and dry. This indicates that the computed water surface elevation is very sensitive to the 1D/2D connection. This may be due to the weir coefficient or the location of the weir resulting in a poor elevation profile. Or maybe the timestep is just too big. Or a combination of factors.

In the below plot of the water surface time series, you can see the water surface oscillating - the 2D cell is wetting and drying every other timestep.

Plotting the time series of depths for the cell, you can see the large changes each timestep.

This demonstrates the importance of placing lateral structures on high ground and have the correct weir elevation profile. If we had survey information we could replace the weir profile. In order to fix this issue, we will need to move the lateral structure to high ground and adjust the edge of the 2D flow area.

Moving the lateral structure to high ground improved the solution and kept the water surface for moving out into the 2D area prematurely, iterating, and poor mapping. No longer due we have max velocity issue in this area, as shown in the max velocity mapping below.

Because lateral structures control flow into 2D flow areas and cell faces control how water moves within the 2D flow area, you must take precaution to ensure these controls are on high ground. Poor placement of cell faces and structures may not result in final water surface elevations that differ from the "perfect" solution, however, than can cause model instabilities that result in longer run times, volume accounting errors, local mapping issues, and other local anomalies. Take care to address each issue to improve model fidelity.

You may find yourself in the situation (shown below) where the Max velocity doesn't match any of the values contained in the output, despite setting the Mapping Output Interval equal to the Computation Time Step. This can happen if you have time slicing turned on. The max value could occur in the 2D cell during a time slice and not be reported at the output interval.

1.1.13 Model Sensitivity and Comparison

After reviewing initial model results and refining the geometry for river hydraulics model, you should spend more time trying to identify parameters in the model that are particularly sensitive. Hopefully, you have already been doing this initial investigation as you found model instabilities or data inconsistencies with previous simulations. There are many model data and parameters that may or may not impact the simulation results that are worth discussion. Saving an existing Plan to a new name and rerunning the model allows for an easy way to look at the affect of simulation parameters.

1.1.14 Parameters

One of the most important parameters that should be evaluated is the effect of the simulation time step on the model. Additional parameters that can and should be considered can be found on the Computation Options and Tolerances window. Some of the more important parameters are discussed below.

Time Step

You should always evaluate the affect of the computation time step on the hydraulic results. If reducing the time step resulted in significant changes to the water surface elevations or velocities, then the smaller time step should be used for future simulations. Various time steps should be evaluated and their effects on model stability, accuracy, and computational run time.

If you would like to have HEC-RAS figure out a time step to use base on the courant criteria, you can use the Advanced Time Step Control available on the Computation Options and Tolerances window.

Time Slices

The computation time step effects the base unsteady flow computation engine. For a combined 1D/2D model, if you require a smaller time step for the 2D Flow Areas, you must use the Time Slicing option. The optimal value can be identified through trial and error balancing model stability, accuracy, and computational run time.

Equations Set

2D model runs have the option to run either the using the Full Shallow Water Equations (SWE) or with the Diffusion Wave (DW) approximation of the momentum equation. The diffusion wave approximation is appropriate in where the dominant forces on flow are mainly gravitation and friction forces. Where local convective acceleration is important, the full shallow water equations will be more appropriate.

() Once a model is up and running, you need to compare runs with the SWE to the DW. If you model shows significant difference, you should be using the SWE for all future model runs.

- **Diffusion Wave** DW is more computationally stable and good for getting a 2D model up and running to get a rough estimate for inundation extents and depths. For complicated problems, DW is simply a first step before applying SWE. Some key points are listed below.
 - Very stable
 - Not good for rapid rising/falling hydrographs (temporal acceleration)
 - Not good for sharp contractions and expansions (accelerations)
 - Not good for sharp bends for modeling super-elevation
 - Not good for tidal boundaries (no wave propagation)
 - Can't model hydraulic jumps
- **Full Shallow Water Equation** SWE is important for modeling rapid changes to flow due to acceleration whether that be do changes in hydrograph or geometry that results in rapidly varied flow. Some key points are listed below.
 - Less stable than DW requiring a smaller time step and longer computation times
 - Needed for rapid rising/falling hydrographs (temporal acceleration) like dam and levee breaches
 - Needed for sharp contractions and expansions (accelerations) like at hydraulic structures like a bridge opening
 - Needed for sharp bends for modeling super-elevation
 - Needed for tidal boundaries (no wave propagation)
 - Needed for modeling hydraulic jumps

Theta Implicit Weighting Factor

Theta is the implicit weighting factor used by HEC-RAS for solving the unsteady flow equations. The default value of 1.0 is the most stable and uses information on from the current time step weight the pressure gradient term in the momentum equation to solve the unsteady flow solution. Using a value smaller than 1.0 will result in the using the information from the previous time step with information from the current time step during the solution. HEC-RAS allows for a value of 0.6 to be used for the most accurate solution (at the cost of stability).

Stability Factors

Stability factors have been added in HEC-RAS to to keep flow from rapidly changing during the simulation. Experience has shown that dampening flow over lateral structures can greatly improve model stability. One the model is stable, these factors can be decrease back to a more accurate solution.

- Lateral Structure Flow Stability Factor This factor ends up reducing the amount of flow change between time step at a structure. A value of 1.0 is the default and more accurate. A value of 3.0 will end up reducing flow and increase model stability.
- Weir Flow Submergence Decay Exponent This factor is used to reduce the amount of flow over a weir that is submerged. Submergence occurs when the tailwater is high enough to slow down flow. Rather than waiting until the weir is highly submerged, weir flow can be reduced sooner resulting in smaller changes in flow and more model stability. The default value of 1.0 uses the default flow reduction. A value of 3.0 reduces under less submergence and is more stable.

Turbulence Modeling

Turbulence modeling can be important in 2D unsteady flow modeling where slow water attempts to slow down faster water and fast water attempts to speed up slower water - the action that produces eddies. Turbulence modeling is only available when using the SWE because the DW approximation ignores all terms except the pressure gradient and bottom friction terms. Turbulence modeling requires the selection of a longitudinal mixing coefficient, transverse mixing coefficient, and Smagorinsky coefficient.

Model Comparison

To understand the model's sensitivity to each of the model parameters previously discussed, you will need to establish a base plan and then compare those results with various alternatives. There are many tools available for results comparison.

Profile Plot

An example profile plot from HEC-RAS is shown below for a single river reach with the max profile for two plans.

XS Plot

An example cross section plot from HEC-RAS is shown below with the max profile for two plans.

Hydrograph Plot

A hydrograph plot from RAS Mapper is shown with a water surface elevation time series plot for two simulations. Output is available from the map for whichever mapping results are visible.

Profile Lines

An example profile plot from HEC-RAS is shown below for a river reach with the max profile for two plans. Output is available from the map for whichever mapping results are visible.

Watch List

The Layer Values Watch List is created by right-clicking on any layer and choosing the Add Watch to Layer Values menu item. As you move the mouse across the map display, the cursor will report the map value next it's label (ID) as well as reporting the value in the Layer Values dialog. This is a valuable tool for a comparison of computed map results. Example output is shown below.

	+ ×	<			
	Use	Name	ID	Value	
+		Terrain	Т	446.07	
+		WSE (Steady Flow)	W	474.03	
·		WSE (Unsteady-SWE)	W	474.34	
	•	WSE (Unsteady-Refined)	W	474.33	
Mess	sages	Views Profile Lines Act	ve Features	ayer Values.	

1.2 Export Channel Data for Terrain

RAS Mapper provides the capability to export channel (bathymetric) from an existing HEC-RAS Geometry to merge with other ground surface information in the Terrain Layer. This improves the visualization of computed water surface inundation extents and depths. Further, it allows the user to "cut" new cross sections at additional locations.

1.2.1 How does it work?

Prior to creating the channel surface, you should understand the process RAS uses to create the data. The channel surface gets the elevation data from the Cross Sections and will then be interpolated from cross section to cross section using the shape of the River Centerline, Bank Lines and Edge Lines. The Bank Lines will control the limit of the "channel" export, while the Edge Lines control the bounds of the interpolation. The results of the interpolation using the Cross Sections, River, Bank Lines, and Edge Lines can be visualized and inspected by the Interpolation Surface.

(i) The channel Bank Lines control how interpolation is performed. Make sure they do not cross each other or the River Centerline.

1.2.2 Step-by-step guide

To export the channel bathymetric data within RAS Mapper, perform the following steps listed below.

- 1. Begin Editing the Geometry of interest.
- 2. Right-click on the Bank Lines Layer and select Compute Bank Lines from XS Bank Stations.
 - a. Inspect the Bank Lines
 - b. Adjust the Bank Lines as needed to properly capture the channel
- 3. Right-click on the Interpolation Surface Layer and select Compute Interpolation Surface.
- 4. Right-click on the Geometry and select Export Layer | Create Terrain GeoTiff from XS's (Channel Only).
- 5. Provide a layer name for the new GeoTiff.
- 6. Provide a rasterization cell size for the new GeoTiff.

To merge the channel GeoTiff with an existing ground surface model, perform the following steps listed below.

- 1. Right-click on the Terrains group and select Create a New RAS Terrain.
- 2. Add the terrain models of interest.
- 3. Prioritize the terrain models, making sure the "channel" surface is on top.
- 4. Enter a unique name for the Terrain Layer.
- 5. Press the Create button.

1.2.3 Common Problems

The results of the channel surface are dependent on the cross sections and bank line information. Because HEC-RAS allows users to store the geospatial "cut line" information separate from the station-elevation data, users might not get the surface they are expecting. The best way to identify problems that will occur with final channel surface is to inspect the Bank Lines Layers.

Below is an example demonstration problems with a channel surface that is created where the geospatial portion of the cross section differs from the station-elevation data. In the figure below, it is clear that the interpolation between the cross sections went poorly in **RAS Mapper**. Investigation of the interpolation surface showed no problems.

Right-click on the Bank Lines Layer and select **Compute Bank Lines from XS Bank Stations** (while Editing the geometry in RAS Mapper). Inspect the cross sections, river centerline, and bank lines together - there is an issue with the bank lines and bank stations. In RAS Mapper, the Bank Stations are created based on the length of the Station-Elevation data. The Bank Lines, however, were generated based on the geospatial length of the cross section. (We currently don't have a solution for this data problem in RAS Mapper, so we need to fix it over in the Geometric Schematic.)

Close RAS Mapper and open the **Geometric Schematic**. Go to the **View | View Options** dialog and turn on the **Ratio of Cut Line Length to XS Length** property.

The computed ratio of the geospatial portion of the cross section and the station-elevation data will be displayed at the start of the cross section (left side) as shown in the figure below.

(i) If the ratio (r) is greater than 1.0, the geospatial portion of the line is longer than the station-elevation data and the cut line should be shortened. If the ratio is less than 1.0 the geospatial portion of the line is shorter than the station-elevation data and should be lengthened.

Because r=1.01, we have identified that the cut line length is too long, given the station elevation data. So how do we fix it? Based on the figure above (where the bank lines don't match the bank station information, we see that the bank lines are shifted too far "to the right" because the geospatial line length is too long. We can double check this information using background imagery. In the figure below, you can see the back station are indeed shifted off the channel into the right overbank. This means we need to shorten the geospatial line length, taking it away from the end.

To shorten an cut line from the end, in the Geometric Schematic, left-click on the cross section and choose **Adjust Cut Line Length to Match Sta/Elev > Right End**.

River 1 Reach 1 8685		
Edit Cross Section		
Graphical Cross Section Editor		
Plot Cross Section		
Plot Profile		
Plot XYZ		
Plot Stage and Flow Hydrograph		
Tabular Output	>	
Rating Curve		
View Photo		
Reverse XS Stationing and Cut Line		
Project XS to Straight Cut Line		
Remove GeoReference Cut Line Data		Left End
Move Cut Line Upstream/Downstream		Both Ends
Adjust Cut Line Length to Match Sta/Elev	>	Right End

(There is currently a replotting bug in HEC-RAS. So Save the geometry and then reopen it.) You will see the cut line changed and (likely) the bank stations will be in the correct location.

Now you can go back to RAS Mapper and perform the data export. Begin editing the geometry and **Compute Bank Lines from XS Bank Stations.** The original banks lines and new bank lines are shown in the figure below.

Inspect the bank lines, et. al and **Compute Interpolation Surface** and **Stop Editing**. Right-click on the Geometry and select **Export Layer | Create Terrain GeoTiff from XS's (Channel Only)**.

Next, merge the channel GeoTiff with an existing ground surface model by right-clicking on the Terrains group and select **Create a New RAS Terrain**. **Add** and **Prioritize** the terrain models.

New Terrain Layer					
Set SRS - Input Terrain Files					
+ Filename		Projection	Cell Size	Rounding	Info
Channel tif		(Same as Project)	5	None	i
	n.tif	(Same as Project)	3.28083333333215	(na)	i
+					
Output Terrain File					
Output Terrain File - Rounding (Precision)		nes 🗖	Merge Inputs to Sing	le Raster	
-Output Terrain File -	: 1/32 ▼ ⊂ Create Stitch Use Input File (Default) ▼	nes 🗆	Merge Inputs to Sing	le Raster	
Output Terrain File - Rounding (Precision)					- 2

Enjoy the fruits of your labor with a new terrain model that has channel information included.

1.3 Re-projecting Model Geometry

Georeferenced HEC-RAS models may need to be reprojected from one coordinate system to another. Typical use cases are a model that has been developed using a local coordinate system (e.g. State Plane) and needs to be converted to a National coordinate system (e.g. Albers projection). HEC-RAS provides tools to perform this coordinate system transformation with relative ease. These tools have been broadly used with 1D model data and have been adapted for 2D models but have not been used as extensively.

However, HEC-RAS does not support coordinate system transformation where a horizontal datum shift is required. Coordinate transformations in North America between spatial reference systems that use NAD83 and WGS84 or in Europe that use ETRS89 and WGS84 work because they share a very similar datum.

1.3.1 Step-by-step guide

Prior to converting your HEC-RAS model, you will need to collect spatial reference system information for the current coordinate system an the coordinate system your are projecting the data into.

() Currently, HEC-RAS only supports the esri projection file specification.

Geometry Conversion

1. Save Project As - save a copy of your project, in case something goes wrong.

E HEC-RAS 5.0.7	>
File Edit Run View Options GIS Tools Help Debug	
New Project	P oss
Open Project	
Save Project	/hite_Lower.prj
Save Project As	/hite_Lower.g02
Rename Project Title	inte_concingoe
Delete Project	
Project Summary	🗘 🛄 US Customary Un
ve Project As	
e File Name Selected Folder Default Project Folder Documents http://www.WASPCS WhiteRiverWASPCS.prg CriUsers/g0fleectal/bocuments/_Support/Reprojection	
00XST(SLA, Contopuore, Albers, Ford), Albers, Mercl, pri Control (Stand), Statefform, Virvining Nte River Lower Channel Segment White Lower, pri Galaxies Galaxie	
OK Cancel Help Create Folder 🖾 c: (05)	

Check your geometry data file. There is a bug with versions 5.05 to 5.07 where the GIS Data Extents tag in the geometry file may have been improperly set. If the GIS Data Extents tag is empty, set it to "GIS Data Extents=0,0,0,0". If the data were generated with HEC-GeoRAS, the tag will be correct (see the example below).

3. Convert the Geometry

- a. Choose Options | Convert Horizontal Coordinate System from the main HEC-RAS window.
- b. Set the **FROM** coordinate system ("Current Project Spatial Reference System").
- c. Set the **TO** coordinate system ("Destination Project Spatial Reference System").
- d. Press OK to convert.
- e. A quick warning will come up this is your last reminder to save your project as a copy of the original. Press **OK**.

RAS	×
Warning - Converting the project's horiz will automatically save the data to the di- existing files to be overwritten, cancel th new name, and convert the duplicate pro	sk. If you do not want your is option, save the project as a
	OK Cancel
A message will come up informing ye	ou of the conversion. Press OK to dismiss.
Convert Project Coordinates	

4. Verify Geometry

f.

- a. The projection will *automatically* be set in RAS Mapper. Use background imagery to verify the data are in the correct location.
- b. Errors may have been created when the model was converted. This will be more likely to have happened with 2D Flow Areas. Errors in the geometry will be reported at the bottom of the Geometric

Here are some things to look for that may need closer attention:

- Duplicate perimeter points
- Mesh cells with too many faces
- Breaklines may need to be enforced as points may not longer be exactly as desired
 Previous hand edits of computation points will then be lost!
- Elevations extracted for cell faces may have "changed" with new terrain. This may result in elevations along Hydraulic Structures no longer being higher than minimum cell elevations. This may be true for Gates and Culverts as well.

Terrain Model Conversion

At this point you will have converted model geometry, but if you wish to visualize inundation results you will need a Terrain Layer in the same coordinate system. If you model is a 2D model, you will need the Terrain Layer for extracting hydraulic properties. The next step is to convert the terrain model.

- 1. Open RAS Mapper.
- 2. Set the coordinate system with the new projection file by selecting the **Tools** | **Set Projection for Project** option.
- 3. Create a New RAS Terrain Layer
- 4. Verify that the data were converted on import.
- 5. Associate the RAS Terrain with the model geometry.

Manning's n Value Layer Conversion

If you have a geospatial Manning's n Value Layer, you will need to convert and associate that dataset as well.

Document the Model

Document in the project file and the geometry files noting the coordinate system it is now in and any other information you think is pertinent

📑 HEC-RAS 5.0).7		-		×
<u>File Edit R</u> u	n <u>V</u> iew <u>Options</u> <u>G</u> IS Tools <u>H</u> elp Debug				
F	<u>☆£&&</u>	✎◄뿐灣낟♛◺뿐◧▦▫	DSS		Ind
Project:	White River_Lower WASPCS	C:\Users\q0heccta\Documents_Support\Reprojection\W	hiteRiver\	WASPCS.pr	j 🔁
Plan:					
Geometry:	Channel Capacity_2019	C:\Users\q0heccta\Documents_Support\Reprojection\W	hiteRiver\	NASPCS.g	02
Steady Flow:					
Unsteady Flow:					
Description :	This model converted from MMC Albers to WA SPCS 4106	(12Sep2018) - Ackerman	^	US Custon	nary Units
	Puyallup River basin CWMS model with the White River ex the model. Floodplain is modeled as 2d and 1d storage are FLOW DATA IS UTC TIME ZONE FOR CALIBRATION AND \		~		

Problems?

If you see this cells with a lot of faces like the image below, you may have converted the data incorrectly. For instance, you may have inadvertently converted the data by using incorrect coordinate systems (e.g. switched the FROM and TO coordinate systems).

1.4 Creating a Terrain Dataset to Model a Flume Experiment

Typically, we use HEC-RAS to model real-world situations. However, sometimes we might find the need to model large-scale (small dataset) problems like a flume. The main problem in create a terrain model is that HEC-RAS uses a raster for storing data; however, this raster is going to be interpolated based on a cross section layout which will result in a terrain model that is not perfect. This document will discuss how we can use HEC-RAS to create a RAS Terrain which we then can used to create a 2D model and try to address some things to think about when creating it.

1.4.1 How Does it Work?

Before you get started you will need to know the dimensions of the dataset and arrive on the grid cell size that the resulting terrain model is going to be. All of the data will be created from cross sections and the variations in terrain will be based on the cell size selected. For this example, we have a flume that is 10m long, 0.5m wide, and 0.5m deep with a 0.1m drop over it's length. You will want enough cells to properly represent the terrain across the channel. For this case, we will use a cell size of 0.01m which will give us adequate defining in cross section (50 cells across).

🗙 Geo	metric Data - Flume - Full	cell offset				_		\times
File Ec	lit Options View Tab	les Tools GIS Tools Help						
Tools Editors	River Reach → Storage 2DFlow Area	SA/2D Area Conn BC Lincs Conn BC Lincs BC Lincs Conn BC Lincs Conn BC Lincs Conn BC Lincs Conn BC Lincs	20 Area Pump Mann Station Regions	RS 22	Description : cell size 0.01m, 0.5m wide, 0.5m deep 0.1m drop over 10m 💍 🛄		ctents for Pr	rofile:
Junct.								<u>^</u>
Section	Example 10.01 r=1.00						ľ) 1
Brdg/Culv Inline Structure		Flume	-	>	>			

You will use the flume dimensions and predetermined grid cell size to create a set of HEC-RAS cross sections. Once the HEC-RAS model geometry is constructed, you will export the geometry to a ground surface (TIF), and then use the ground surface to create a RAS Terrain. Creating the ground surface from cross sections ends up truncating the data around the edges by 1/2 a grid cell size, so you will need to consider that when making the data and make your model 1 grid cell longer and wider on all four sides of the model (2 cells longer, 2 cells wider).

(i) Buffer the model domain by 1 grid cell length

Make your model 1 grid cell size longer at the upstream and downstream end and 1 grid cell wider on the left and right overbank.

1.4.2 Step-by-step guide

Perform the following step in HEC-RAS:

- 1. Create a new RAS project, set the Unit System, and start a new Geometry.
- 2. From the Geometric Data Editor, draw a River Centerline, providing a river and reach name.
- 3. Open the **GIS Tools** | **Reach Invert Lines Table** to enter the XY coordinates for the river line. Enter the geospatial coordinates for the river line. (Note: the river should be 1 cell farther upstream and downstream of the model limits - an easy way to do this is add a row at the start and add a row at the end.)

	Schematic X	Schematic Y	
1	-0.01	0	
2	0	0	
3	10	0	
- 4	10.01	0	

For the example, above, the flume is 4.25m long. Additional, length (0.001m) was added based on 1 grid cell size upstream and downstream.

4. Create bounding cross sections at the top and bottom of the river reach. The "base" cross sections will be at RS 4.25 and RS 0. You will also need to add them to RS 4.251 and RS -0.001. Further, the cross sections must be wider (0.001m on both sides) than the true dimension.

RS 10	.01/10	RS 0/	-0.01	
Station	Elevation	Station	Elevation	
-0.26	0.6	-0.26	0.5	
-0.25	0.6	-0.25	0.5	
-0.25	0.1	-0.25	0	
0.25	0.1	0.25	0	
0.25	0.6	0.25	0.5	
0.26	0.6	0.26	0.5	
	True Dimensior	n Model		
Add XSs				†
US and DS Offset by				1
one 2D	1111			Widen each
Cell				XS by one 2D
				cell on each
<u>++</u>	Adjusted M	odel to Create Te	errain	side

^{5.} Reach lengths will vary for each cross section. For RS 4.25 the reach length is full length of the reach (4.25m). For RS 4.251 and RS 0 use the cell size (0.001m).

6. Set Bank Stations.

7. Open the **GIS Tools | CS Cut Lines Table** to enter the XY coordinates for each cross section. The cut lines must match the station-elevation data. (It's easiest to think of the main channel and then then extend the left and right sides by 1 grid cell length.)

RS 1	0.01	RS	10	RS	5 0	RS -	0.01
X	Y	Х	Y	х	Y	Х	Y
-0.01	0.26	0	0.26	10	0.26	10.01	0.26
-0.01	0.25	0	0.25	10	0.25	10.01	0.25
-0.01	-0.25	0	-0.25	10	-0.25	10.01	-0.25
-0.01	-0.26	0	-0.26	10	-0.26	10.01	-0.26

- 8. Save the Geometry.
- 9. Open RAS Mapper.
- 10. Right-click on the Geometry and choose Export Layer | Create Terrain GeoTiff from XS's (Overbanks and Channel).
- 11. Provide a **filename** and **cell size** (0.01 for this example).
- 12. Right-click on the Terrains group and choose Create a New RAS Terrain.
- 13. Click **No** to disregard having a projection.

14. Add the ground surface raster, choose **None** for Rounding, **No Vertical Conversion**, and **uncheck** Create Stitches.

Set SRS Input Terrain Files	Spatial Reference System Projection is not specified for	or this project!	_	Generate Raste	r (DEBU
+ Filename		Projection	Cell Size	Rounding	Info
			0.01	None	i
<u>↑</u> +					
Output Terrain File					
+	None Create Stitches	Mer	ge Inputs to Sir	ngle Raster	_
Output Terrain File Rounding (Precision):	None Create Stitches			ngle Raster Files (DEBUG)	

- 15. Provide a filename → click on the folder button to give the terrain a name other than the generic "Terrain.hdf"
 - Filename: C:\Users\q0hecsag\Documents\Projects_Flume Model\Flume Model\Terrain.hdf
- 16. Click Create.
- 17. You can now inspect your Terrain model.

1.4.3 Some Things to Consider

You now have a terrain model with which you can visualize HEC-RAS results from a 1D model or you can use as the basis for creating a 2D model.

In order to properly plot the data (like in the figure below), you will need to set the precision for the horizontal and vertical data. Because we are using data to many decimal places, match the horizontal precision from the **Tools** | **Options** menu.

Take a look at your new RAS Terrain. Raster datasets have a single value per grid cell; however, RAS interpolates data from cell center to cell center so that a continuous profile may be extracted. This will result in a slope on the walls of the flume. You can experiment with elevations of the extended points in the station-elevation data to get the best representation of the channel for your purposes.

1.4.4 Creating a 2D Model

When creating a 2D model domain, the model should run from the upstream cross section (RS 10) to the downstream cross section (RS 0), ignoring the boundary cross sections. You can use the geospatial coordinates of the cross sections to create the mesh boundary.

- 1. In RAS Mapper, Add a New Geometry
- 2. Right click on 2D Flow Area and Select Start Editing

D Flume			
🗄 🔲 Cross Sections			
Storage Areas	n=		-
🔲 Perimeters		Layer Properties	
- Computation - Breaklines	0	Edit Geometry	
🗆 🗖 Refinemen	iā,	Zoom to Layer	
Bridges/Culver Inline		Move Layer	•
E Lateral Structu	1	Export Layer	•
		Open Folder in File Explorer	
□ BC Lines • □ Manning's n		Compute 2D Flow Areas Hydraulic Tables	
	HT	Plot Property Table	
- Percent Imperi		Find	

D. V 2D Flow Areas

and then choose the draw tool. 💟 (just 3

- 3. Add a perimeter: Click on **Perimeter** points is fine).
- Select the perimeter, right-click on the perimeter and choose the Geospatial Operations | View/Edit Points menu item. (If you can't find this function, go to the geometry editor and select GIS Tools → Storage Area/ 2D Area Outlines)
- 5. Enter the true coordinates of the flume (without the extra cells added) points in consecutive order.

	Х	Y
1	0	0.25
2	10	0.25
3	10	-0.25
4	0	-0.25

6. Edit the 2D Flow Area

7. Provide the cell mesh point spacing and enter the appropriate n value

📑 2D Flow Area Editor	-		×
2D Flow Area: Flume			
Cell Properties			
Computation Points			
Points Spacing (m) DX: 0.01 DY: 0.01 Mesh State =	Complete		^
Number of Ce Average Face Average Cell Maximum Cell Minimum Cell	e Length = 0 Size = 0 Size = 0		
Generate Computation Points Mesh Status	= Success: C	reated in	~
Hydraulic Cell/Face Properties			
Default Manning's n Value: 0.016 Co	mpute Prop	erty Table	s
Force Mesh Recomputation		Clo	se

8. Enter appropriate hydraulic table parameters

Hydraulic Property Table Tolerances	x
Flume Set the 2D Row Area's Cell and Face Filter To the Hydraulic Table Computations.	lerances for
, Cell Elev-Vol Filter Tol (m): Cell Minimum Area Fraction:	0.0001
Face Profile Filter Tol (m):	0.0001
Face Elev-Area Filter Tol (m):	0.0001
Face Conveyance Tol Ratio:	0.001
Face Laminar Depth (m):	0.01
Defaults OK	Cancel

- 9. Create your upstream and downstream boundary conditions location in RAS Mapper.
- 10. Stop Editing.
- 11. Enter flow data for the upstream boundary.
- 12. Set up you Plan and Simulate.

1.5 Modeling Steep Reaches

Frequently, we are developing an unsteady-flow river hydraulics model and the finite difference methodology goes unstable during the simulation. This can occur in extremely steep river reaches and when modeling dam breach events where the hydrograph is rapidly rising from a low base flow (usually in very steep terrain). The model may be going unstable for many other reasons; however, for the case where the reach is extremely steep (greater than 1% slope) and flows are low, the model is likely unable to solve the full shallow water flow equations because the water surface is going supercritical and flow depths are small. This is typically because, for the prescribed flow, the solution to the equations results in high velocities and shallow depths and the resulting derivatives for the change in water surface depth ends up being large compared with the depth from the previous time step.

There are many modeling capabilities in HEC-RAS than can be considered to improve model stability: increasing Manning's n values (see also Jarrett's equation), decreasing model time step, using the Advanced Time Step Control, adding Inline Structures for those extremely steep drops, turning on the Mixed Flow Regime, and/or

incorporating Pilot Channels into the geometry. Each of the model capabilities should be considered; however, sometimes the model is just very steep and the finite difference solution scheme will just not stay stable. When you go to run your simulation, you end up with the dreaded "red" bar and, despite your best efforts, the model simulation continues to go unstable.

At some point, you should consider the Hydrologic Routing Method that is available in HEC-RAS from the **Geometric Data Editor | Options | Hydrologic Unsteady Routing** menu item. The Hydrologic Unsteady Routing option allow you to define portions of the model to be routed with a hydrologic routing technique instead of using the full unsteady-flow equations. The hydrologic routing method is based on the Modified Puls routing technique.

Modified Puls Hydrol	ogic Routing (Un	isteady Flow)		
Use Modified Pul	Is Routing	Add Region	Edit Region	Delete Region
Tail Water Check	2			
River	Reach	RS Up	RS Dn	RC's Imported
Import Rating Curves	s for Selected Reg	ions		
Steady Flow Output F			s)	▼ 1 profiles
1	Import Rating Cur	ves (RC's) from	Steady Flow (Dutput
		A		
Plot			OK	Cancel

As you can see from the **Modified Puls Hydrologic Routing** window, you will need to specify a Region (routing reach) to utilize the routing and Import Rating Curves for that reach. This requires that you set up a steady flow plan that has multiple steady flow profiles representing the range of flows you will simulate (at least 20 is usually recommended).

ाँ- Steady Flow Da	ata - Steady Flows	;																					×
Eile Options He	elp																						
Description :																						Û	
Enter/Edit Number of	Profiles (32000 ma	x): 25	Read	ch Boundary O	onditions]																	
	Lo	ications of F	low Data C	thanges		-																	
River: Steep River	•	_				Add Multiple.	_																
Reach: Steep Reach	ı _ ا	River Sta.:	9.3787	•	Add A Flow	Change Location	n																
Flow (Change Location												rofile Names a	ind Flow Rate:	:								
River	Reach	RS	PF 1	PF 2	PF 3	PF 4	PF 5	PF 6	PF 7	PF 8	PF 9	PF 10	PF 11	PF 12	PF 13	PF 14	PF 15	PF 16	PF 17	PF 18	PF 19	PF 20	PF 21
1 Steep River	Steep Reach	9.3787	500	600	700	800	900	1000	1250	1500	1750	2000	2250	2500	3000	3500	4000	4500	5000	6000	7000	8000	9000
4																							

Run the Steady Flow Analysis to develop the water surface profiles for the multiple runs.

Next, set up the **Hydrologic Unsteady Routing** option. Click the Add Region button from the **Modified Puls Hydrologic Routing** window.

Modified Puls	Hydrologic Routing (Unsteady Flow)		
🗌 Use Modi	fied Puls Routing	Add Region	Edit Region	Delete Region
🔲 Tail Water	Check 🛛 😰			
River	Reach	RS Up R	RS Dn RC's	Imported
Selec	t a River <mark>R</mark> each and Ri	ver Station		
Modi	fied Puls Routing Region			
River	: Steep River	US RS:	9.3787	• I I
Read	h: Steep Reach	▼ DS RS:	0.0177	-
			ОК	Cancel
	6			
-Import Ratin	g Curves for Selected R	egions		
Steady Flow	Output Plan: Steady F	lows (Steady Flows)	· · · · · · · · · · · · · · · · · · ·	25 profiles
	Import Rating C	Curves (RC's) from St	teady Flow Output	t
Plot			ОК	Cancel

Then Import Rating Curves for the selected reach by clicking the **Import Rating Curves (RC's) from Steady Flow Output** button. You must have the same geometry as was used in the steady flow simulation. Once imported, the River Reach will show how many Rating Curves will be used - a rating curve for each cross section in the model. Make sure to turn on the hydrologic routing method by checking the **Use Modified Puls Routing**.

Modified Puls Hydrol	ogic Routing (Un	steady Flow)		
✓ Use Modified Pul	Is Routing	Add Region	Edit Region	Delete Region
🔲 Tail Water Check	2			
River	Reach	RS Up	RS Dn	RC's Imported
1 Steep River	Steep Reach	9.3787	0.0177	412 RC's
-Import Rating Curves	n for Salected David			
			->	- 25 61
Steady Flow Output F	Plan: Steady Flow	is (Steady Flow	s)	 25 profiles
	Import Rating Curv	ves (RC's) from	Steady Flow (Dutput
Plot			ОК	Cancel

Run the unsteady-flow simulation. The areas where you used Modified Puls routing will solve, producing a stable solution.

The Profile Plot will should show a reasonable result with no steep spike due to model instability.

1.5.1 Limitations and Considerations

- Users often ask, whether Modified Puls routing (which is thought of as level-pool routing) can be used in the steep reaches. Yes, you can. The rating curves that are developed for use in unsteady-flow routing in HEC-RAS are built from sloped water surface profiles! Therefore, think of it as linear routing, not level-pool routing.
- To use the Modified Puls routing method, you must develop rating curves using the exact geometry used for the unsteady-flow simulation.
- Modified Puls routing reaches much be broken up at junctions.
- The Modified Puls routing can span across bridges and inline structures.
- However, the Modified Puls should be broken up at any inline structures that have gates. For a large inline structure/dam, you might want to start a Modified Puls region immediately downstream of the structure, but you wouldn't typically need a Modified Puls region immediately upstream of the structure.
- The Modified Puls can compute flow over lateral structures.
- For steep reaches, the Modified Puls can often provide good answers. One limiting factor may be whether the steady flow rating curves represent the unsteady flow. For steep reaches, the downstream tailwater effect does not propagate as far upstream as it would for shallower reaches. So the unsteady flow WSE often matches the steady flow rating curve. Nevertheless, if the Modified Puls is influenced by a tailwater that is not adequately captured by the steady flow rating curves, there will be a loss of hydraulic accuracy. For instance, if the downstream end of a Modified Puls region is influenced by a reservoir that has a varying water surface that is not strongly correlated with the flow. However, even some loss of hydraulic accuracy may be acceptable in order to prevent instability. This is especially true in the situations where the Modified Puls is only being used over a few problematic cross sections.
- The tailwater check option was intended to allow the Modified Puls region to incorporate the effects of when the tailwater was higher than the value from the rating curve. However as far as stability, this option is not as robust as using the Modified Puls without this option. It is recommended to develop the Modified Puls regions without the option. And then, if desired, selectively turn the option on checking that stability is maintained.

1.6 GDAL Projection File Warning

To learn more about projection files and how RAS Mapper uses spatial reference systems, go here⁴.

Sometimes a spatial projection file (*.prj) will produce the following warning in RAS Mapper.

The warning message is also displayed in the Coordinate Reference System of the RAS Mapper Options window as shown below.

⁴ https://www.hec.usace.army.mil/confluence/rasdocs/rmum/latest/spatial-reference-system

Project Settings	Coordinate Reference System
Projection *	Projection File: C:\Terrain Modification\GISData\projection-bad.prj
General	
Render Mode	PROJCS["NAD_1983_StatePlane_Indiana_East_FIPS_1301_Feet",GEOGCS
Mesh Tolerances	[I'GCS_North_American_1993".DATUM["D_North_American_1993".SPHEROID [I'GRS_1980",6378137.0,298.257222101]].PRIMEM['Greenwich".0.0].UNIT [I'Degree".0.0174532925199433]].PROJECTION['Transverse Mercator'].PARAMETER
Global Settings	["False_Easting",328083.33333333333],PARAMETER ["False_Northing",820208.333333333],PARAMETER["Central Meridian",-
General	15.666666666666667],PARAMETER["Scale_Factor"] 0.999966666666667],PARAMETER ["Lattude Of Origin".37.5],UNIT["Foot US", 0.3048006096012192],AUTHORITY
RAS Layers	Warping Method
Map Surface Fill	Default Method (GDAL Warp)
Editing Tools	C Alternate HEC-RAS Raster Warping Method
	Warning: GDAL issued a warning that this projection file is corrupted. You
	 warning. GDAL issued a warning that this projection life is complete. To may experience problems using HEC-RAS with this projection file.
	Help me find a coordinate reference system: <u>spatialreference.org</u>
	RAS Project Units: US Customary Restore Defaults

One common cause of this error is a field AUTHORITY["X",Y]. The field is usually at the end of the projection file as in the example below

UNIT["Foot US",0.3048006096012192],AUTHORITY["EPSG",2965]]

To avoid the warning message, edit the projection file in a text editor and remove the AUTHORITY field as shown below

UNIT["Foot_US",0.3048006096012192]]

Then set the projection file again in RAS Mapper as the warning message should disappear (see figure below).

RAS Mapper Options	×
Project Settings	Coordinate Reference System
Projection	Projection File: C:\Terrain Modification\GISData\projection.prj
General	Definition
Render Mode	PROJCS["NAD_1983_StatePlane_Indiana_East_FIPS_1301_Feet",GEOGCS
Mesh Tolerances	["GCS_Noth_American_1983".DATUM["D_Noth_American_1983".SPHEROID ["GRS_1980",6378137.0,298.257222101]],PRIMEM["Greenwich".0.0],UNIT ["Degree".0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER
Global Settings	["False_Easting",328083.33333333333],PARAMETER ["False_Northing",820208.333333333],PARAMETER["Central_Meridian",-
General	85.66666666666667],PARAMETER["Scale Factor".0.9999666666666666667],PARAMETER ["Latitude Of Origin".37.5].UNIT["Foot US".0.3048006096012192]]
RAS Layers	Warping Method
Map Surface Fill	Default Method (GDAL Warp)
Editing Tools	C Alternate HEC-RAS Raster Warping Method
	Help me find a coordinate reference system: <u>spatialreference.org</u> RAS Project Units: US Customary Restore Defaults
	OK Cancel Apply

1.7 Skip SRS Translation For Terrain Imports

HEC-RAS Mapper can create terrains from a wide variety of raster data formats. Some of these formats such as GeoTIFF can include a spatial reference system (SRS) stored internally within the file. When this internal projection data is not stored properly, or is in a format that HEC-RAS geospatial libraries don't recognize, you will NOT be able to reproject the raster and create an HEC-RAS terrain. This guide discusses how to work around an unrecognized internal raster projection (or when NO projection is specified) by skipping the SRS translation step and importing the terrain dataset directly into a RAS Terrain.

A raster surface was exported from a CAD application as a GeoTIFF with an internally stored SRS. When attempting to create a new terrain with this surface in HEC-RAS Mapper an error occurs indicating there was an issue translating the the SRS:

				쭕 Creating Terrain 'Terrain'	×
Sin New Terrain Layer			;		
				Computation Task hh:mm:ss	^
Set SRS				Importing 1 of 1: CADSurface.tif -> Terrain.CADSurface.tif Step 1 of 4: Translating to GeoTiff and reprojecting	
	Projection	Cell Size Roundi	ng Info	ERROR 1: Translating source or target SRS failed:	
CADSurface M	LOCAL_CS["MD83F		ig nio		
× CADSunaceAll	LOCAL_C3[MD83P	1 None		Step 1 of 4: Translating to GeoTiff and reprojecting 0 Error creating Terrain: C:\Temp\ProjectionIssues\Terrain\Terrain.CADSurface.tif: No such file or directory	,
				Cleaning up files	
<u>+</u>					
<u>→</u>					
Output Terrain File					
Rounding (Precision): 1/32	Create Stitches	ge Inputs to Single Raste			
Vertical Conversion: Use Input File (Default)	•				
Filename: C:\Temp\ProjectionIssues\Terrain	n\Terrain.hdf		<u> 2</u>		
		Create	Cancel		
					~
				, 	Close
	11				

First, **clear the SRS** from the RAS Mapper Options and select **Apply**. This will ensure that HEC-RAS will not attempt to use the source raster internal SRS data to reproject it into the project SRS.

🚟 RAS Mapper Options	×
Project Settings Projection * General	Coordinate Reference System Projection File:
Render Mode Mesh Tolerances Global Settings General RAS Layers	Select or enter name of the spatial reference projection file.
Map Surface Fill Editing Tools	O Efault Method (GDAL Warp) O Alternate HEC-RAS Raster Warping Method
	Help me find a coordinate reference system: <u>spatialreference.org</u> RAS Project Units: US Customary OK Cancel Apply

Next, create a new RAS terrain, and Respond "**No**" to the dialog requesting a to set Project SRS:

🚟 RAS Mapper	
File Project Tools Help	
	🖕 🖑 🔇 🤁 💥 🛠 🔶 🚟 🚾 🔣 🚳 🐂 🕅 🗔 Max 🛛 Min 🔳
Features Geometries Event Conditions Results Map Layers	
→ Download Terrain Data	
📚 Create a New RAS Terrain	HEC-RAS Spatial Reference System
Add an Existing RAS Terrain	
	It is recommended that the Project Spatial Reference System (SRS) be set before creating GIS data. Would you like to set the SRS now? Click 'Yes' to jump to the dialog where the ESRI Projection file (*.prj) file is set, or 'no' to go directly to the terrain creation dialog.
	Yes No

In the terrain importer select the source terrain data. Another message dialog will appear asking if you want to use the raster's SRS for the project. Select "**No**".

-	t SRS errain Files			Spatial Refe	rence System i	s not specified f	or this project!	
+ + +	Filename			Projection	Cell Size	Rounding	Info	Spatial Reference System This HEC-RAS model currently does not have a spatial reference system associated with it. The raster file: 'C:\Temp\ProjectionIssues\3-7-23\tif\CADSurface.tif' has a projection associated with it. Do you want this file's spatial reference system to be used for this RAS model?
Roundi Vertica Filenar	me:	1/32 Use Input File (Default) C:\Temp\ProjectionIssues\ no files are selected for im			rge Inputs to Si	ngle Raster	Cancel	Yes No

The terrain import process will complete, but errors are shown indicating that the SRS is missing and no reprojection was done: "*Step 1 of 4: Translating to GeoTIFF without SRS...*" Since the SRS was missing RAS Mapper imported the terrain data but skipped the reprojection step. That means the new HEC-RAS terrain will maintained the projection of the source raster data as is.

Treating Terrain 'Terrain'											>
Computation Task	Τ	hh	: mm : :	ss	_	_	_	_	_	_	\wedge
<pre>Importing 1 of 1: CADSurface.tif -> Terrain.CADSurface.tif Step 1 of 4: Translating to GeoTiff without SRS ERROR 1: PROJ: proj_get_ellipsoid: CRS has no geodetic CRS ERROR 1: PROJ: proj_get_ellipsoid: Object is not a CRS or GeodeticReferenceFrame ERROR 1: PROJ: proj_get_ellipsoid: CRS has no geodetic CRS ERROR 1: PROJ: proj_get_ellipsoid: Object is not a CRS or GeodeticReferenceFrame Step 1 of 4: Translating to GeoTiff without SRS Step 2 of 4: Rounding and Generating Statistics Step 3 of 4: Generating Histogram Step 4 of 4: Adding Overlays CADSurface.tif Import Complete.</pre>				1 0 0 0							
Final Processing: Terrain.hdf Step 1 of 3: Creating Terrain.vrt Step 2 of 3: Creating Terrain.hdf Step 3 of 3: Creating Stitch-TIN for merging rasters				0 0 0							
Terrain Complete	I			3							
								C	los	e	Y

Next, set the Project SRS to the know projection of the terrain data.

🚟 RAS Mapper Options	×
Project Settings	Coordinate Reference System
Projection	
General	Projection File: C:\Temp\ProjectionIssues\3-7-23\Projection\2248.prj
Render Mode	PROJCS["NAD83 / Maryland (ftUS)",GEOGCS["GCS_North_American_1983",DATUM
Mesh Tolerances	["D_Noth_American_1983",SPHEROID ["GRS_1980",6378137,298.257222101]],PRIMEM["Greenwich",0],UNIT ["Degree",0.017453292519943295]],PROJECTION
Global Settings	["Lambert_Conformal_Conic"],PARAMETER["standard_parallel_1",39.45],PARAMETER ["standard_parallel_2",38.3],PARAMETER
General	["latitude_of_origin", 37.66666666666666,PARAMETER["central_meridian",- 77],PARAMETER["false_easting", 1312333.333],PARAMETER["false_northing",0],UNIT
RAS Layers	Warping Method
Map Surface Fill	Default Method (GDAL Warp)
Editing Tools	C Alternate HEC-RAS Raster Warping Method
	Help me find a coordinate reference system: <u>spatialreference.org</u> RAS Project Units: US Customary
	OK Cancel Apply

Finally, verify the terrain is projected correctly using background imagery .

2 Tutorials

Tutorials are intended to walk users through a task using detailed instructions with example data.

- Downloading Terrain Data(see page 74)
- Creating a RAS Terrain(see page 80)
- Terrain Modification(see page 84)
- Floodway Encroachment Analysis 1D Unsteady Flow(see page 91)
- Flow Hydrograph Optimization(see page 98)
- 2D Rules(see page 104)
- 1D Sediment Modeling Tutorial(see page 117)
- Modeling a 2D Half Pipe with Non-Newtonian Fluid(see page 118)
- Debris Flow Workshop(see page 119)

🔒 Terms of Use

Any use or reproduction of this material must be attributed to the US Army Corps of Engineers Hydrologic Engineering Center.

2.1 Downloading Terrain Data

Ground surface elevation data is crucial to developing a good HEC-RAS model. Often, identifying terrain dataset for use in the study can be a difficult task. HEC-RAS is attempting to streamline the process of the getting the modeling process started by providing tools to assist in the acquisition of terrain data.

The USGS has made data for the United States available for download through the National Map Viewer⁵. In an effort to simplify the process of utilizing elevation data provided as part of the USGS 3DEP⁶ (3D Elevation Program), HEC-RAS Mapper provides the capability to "automatically" download terrain data. While the USGS terrain data may be representative of the ground surface in the overbank areas, it most likely will not accurately represent the ground surface in the river channels. This will be evident due to flat features where water existed during data collection.

To utilize the download tool, you must first have a Projection defined and zoom to the area of interest.

2.1.1 Open RAS Mapper

To access the USGS Terrain download tool, select the **Project | Download Data | USGS Terrain** menu item. The figure shown below will be displayed.

⁵ https://apps.nationalmap.gov/viewer/

⁶ https://www.usgs.gov/3d-elevation-program

Add Web Terrain		– 🗆 X
Import Extents Extent Source: Current View Product Query Data Type: Elevation Models Available Data Products	lucts	
Add Selected	Products for Download:	Estimated Download Size: Unknown
Download Directory:\Terrain\USGS		
Open Folder After Files Finish Downloading		Start Download Close

To get and use the data, you will follow four basic steps.

- 1. Query the USGS Product Database
- 2. Select the USGS Products of Interest
- 3. Download the USGS Datasets
- 4. Create a RAS Terrain.

Query Products

First, you will need to identify the **Import Extent** (the default option in the current view). The extent options include Current View, Geometry, Shapefile, and Manual Entry.

Next, press the **Query Products** button to ping the USGS server to see what data are available. At this time, you can ask for Elevation Model data or Topo Maps (in case you want those as background layers). When you query the USGS database, the interface will provide feedback that it is working, as shown below.

wing products, one moment please.

Once the list of available data has been received, the Available Data Products table will be populated as well as showing information about the dataset including Cell Size, Description, Date (Published), File Size, and Web Link to metadata. As shown in the figure below, there are likely to be several elevation data sources for your study area.

() Note that the information about each data set will not necessarily be valid. The data download tool is passing on information scraped from the USGS database.

If you Query Projects using the Geometry for the source extent, the data download tool will automatically restrict the data products returned to just those that intersect the selected geometry. This can be a handy option if you already have an existing HEC-RAS model.

Select Products

To add a terrain dataset to the **Products for Download** list, select the product and click the **Add Selected** button or check the box. This will place a check mark in the "Data to Download" column.

Product Data Ty		·	on Models Query Products				
		ta Products (10m 🔲 30	(1137)			Show	1
	1	CellSize	Description	Date	FileSize	Web	-
6		1m	USGS one meter x34y457 IL LaSalle B1 2017	2020-03-30	405 MB	<u>Link</u>	
7		1m	USGS one meter x34y458 IL LaSalle B1 2017	2020-03-30	396 MB	<u>Link</u>	1
8		1m	USGS one meter x34y459 IL LaSalle B1 2017	2020-03-30	397 MB	<u>Link</u>	1
9		1m	USGS one meter x35y457 IL LaSalle B1 2017	2020-03-30	409 MB	<u>Link</u>	1
10		10m	USGS 13 arc-second n42w089 1 x 1 degree	2019-02-14	403 MB	<u>Link</u>	1
11		10m	USGS 1/3 Arc Second n42w089 20220105	2022-01-12	445 MB	<u>Link</u>	1
12		30m	USGS 1 Arc Second n42w089 20220105	2022-01-12	53 MB	<u>Link</u>	1
13		30m	USGS 1 arc-second n42w089 1 x 1 degree	2019-02-14	50 KB	<u>Link</u>	1
14		Original	USGS Original Project Resolution IL_LaSalle_County_QL2_Plus_Lidar_2017_B17 83	2019-02-14	2 MB	<u>Link</u>	1
15		Original	USGS Original Project Resolution IL_LaSalle_County_QL2_Plus_Lidar_2017_B17 83	2019-02-14	2 MB	<u>Link</u>	
⊎	Add S	Selected	Remove Selected Products for Download: 0 of 1137	Estimated	Download Siz	e: 0 B	

To assist you with identifying the data to download, the data download tool has a **Filter** mechanism. The filter capabilities have some built in filters based on grid resolution (1m, 10m, 30m, Original) or you can enter your own

filter. For the example figure below, the data have been filtered for just the one meter data ("1m"). Note, this reduces the number files in the table to 9 (of 1137 *Available Data Products*).

Ad	ld We	eb Terrain			-		
	ort Ex						
Exte	ent Sc	ource: Cum	ent View				
Proc	duct C	Juery					_
Dat	а Тур	e: Elev	ation Models Query Products				
			ts (Filtered: 9 of 1137) 30m)nly Show	
	<u> </u>	CellSize	Description	Date	FileSize	Web	
▶1		1m	USGS one meter x35y459 IL LaSalle B1 2017	2020-03-30	432 MB	<u>Link</u>	
2		1m	USGS one meter x35y458 IL LaSalle B1 2017	2020-03-30	426 MB	<u>Link</u>	
3		1m	USGS one meter x33y457 IL LaSalle B1 2017	2020-03-30	431 MB	<u>Link</u>	
4		1m	USGS one meter x33y458 IL LaSalle B1 2017	2020-03-30	395 MB	Link	
5	\Box	1m	USGS one meter x33y459 IL LaSalle B1 2017	2020-03-30	400 MB	<u>Link</u>	
6		1m	USGS one meter x34y457 IL LaSalle B1 2017	2020-03-30	405 MB	<u>Link</u>	
7		1m	USGS one meter x34y458 IL LaSalle B1 2017	2020-03-30	396 MB	<u>Link</u>	
8		1m	USGS one meter x34y459 IL LaSalle B1 2017	2020-03-30	397 MB	<u>Link</u>	
9		1m	USGS one meter x35y457 IL LaSalle B1 2017	2020-03-30	409 MB	<u>Link</u>	
+₩	A	dd Selected	Products for Download: 0 of 1137	Estima	ted Download	Size: 0 B	
)owi	nload	Directory:	\Terrain\USGS				
		C-14 AA C	iles Finish Downloading	Start Do	woload	Clo	

The data download tool also assists you in selecting data by providing an *interactive* layer. When the products are queried, 2 layers will be added to RAS Mapper: **USGS Products Available** and **USGS Products to Download**. The USGS Products to Download layer can be used to interactively select datasets. It will also show you what is selected in the Table on the download tool. Using the Selection Tool, in RAS Mapper, you can *Add* to the selection by using the **Ctrl** key or *Remove* from the selection using the **Ctrl+Shift** key. Once you have selected the terrain dataset, right-click (on the layer name or the features) and choose **Add Selected Products for Download**. **Remove Selected Products for Download** is likewise available.

Ctrl + Click -> Adds to the current selection Ctrl + Shift + Click -> Removes from the current selection

Once a product is selected for download, it will be add to the **USGS Products to Download** layer and the features will be painted using that layer's symbology (green is default).

The selected products for download will be reflected in the product list with a check mark. You can verify each product with highlighting a row in the table and the selection in RAS Mapper will update (and vice versa).

🚟 Add	Web	Terrain			-		×	×
Exten			View					Max Min 📢 🕨 🕨 🗮
Produ		·	n Models V Query Products					GS Products Available'
Availa	ible D	ata Products (Filtered: 103 of 1137)			y Show	<u>v</u>	1
	<u>.</u>	CellSize	Description	Date	FileSize	Web	Ā	
1	◄	Original	USGS Original Project Resolution IL_LaSalle_County_QL2_Plus_Lidar_2017_B17 83	2019-02-14	1 MB	<u>Link</u>	H	Sector 2
2	◄	Original	USGS Original Project Resolution IL_LaSalle_County_QL2_Plus_Lidar_2017_B17 83	2019-02-14	1 MB	<u>Link</u>		
3	◄	Original	USGS Original Project Resolution IL_LaSalle_County_QL2_Plus_Lidar_2017_B17 83	2019-02-14	2 MB	<u>Link</u>		
▶ 4		Original	USGS Original Project Resolution IL_LaSalle_County_QL2_Plus_Lidar_2017_B17 83	2019-02-14	2 MB	Link		
5	◄	Original	USGS Original Project Resolution IL_LaSalle_County_QL2_Plus_Lidar_2017_B17 83	2019-02-14	1 MB	<u>Link</u>		
6	◄	Original	USGS Original Project Resolution IL_LaSalle_County_QL2_Plus_Lidar_2017_B17 83	2019-02-14	2 MB	<u>Link</u>		
7	◄	Original	USGS Original Project Resolution IL_LaSalle_County_QL2_Plus_Lidar_2017_B17 83	2019-02-14	1 MB	<u>Link</u>		
8	◄	Original	USGS Original Project Resolution IL_LaSalle_County_QL2_Plus_Lidar_2017_B17 83	2019-02-14	2 MB	<u>Link</u>		
9	◄	Original	USGS Original Project Resolution IL_LaSalle_County_QL2_Plus_Lidar_2017_B17 81	2019-02-14	1 MB	<u>Link</u>		
10	◄	Original	USGS Original Project Resolution IL_LaSalle_County_QL2_Plus_Lidar_2017_B17 81	2019-02-14	599 KB	<u>Link</u>	-	
+₩	Add	Selected	Remove Selected (1) Products for Download: 103 of 1137	Estimated	I Download Si:	ze: 203	мв	
Downl	oad Di	rectory:	\Terrain\USGS					
I∎ Op	en Fo	lder After Files	Finish Downloading	Start Down	load	Clo	se	2 mi

As products are added to the download list, the download tool will provide feedback. The **Products for Download** count and the **Estimated Download Size** will will be updated to inform you of the selection. (Note, the file size estimate comes from the file's metadata and is often incorrect.)

Download Products

By default, a **USGS** directory will be created in the **Terrain** folder. Clicking the **Start Download** button with begin the process of downloading the USGS data. The download process will happen asynchronously, so that you can continue using RAS Mapper. As the data download, a status window will appear. If you expand the window, you will get the status for each file.

Once the data have been downloaded, a window will be displayed informing the of the process. A file explorer window will also be open, if the the **Open Folder After Files Finish Downloading** check box is selected.

When you close the terrain download tool, the interactive USGS layers will be removed from RAS Mapper.

2.2 Creating a RAS Terrain

2.2.1 Objective

In this tutorial, you will learn how to create how to create a RAS Terrain from a raster representing ground surface elevations.

2.2.2 Background

You will be working with a section of the White River at Muncie, IN.

2.2.3 Creating a RAS Terrain

- 1. Start HEC-RAS.
- 2. Save the project using **File | New Project** and providing a project name.
- 3. Launch RAS Mapper 🔎
- 4. Select **Project | Set Projection for Project** and navigate to the "**projection.prj**" provided in the "GISData" folder. This sets the coordinate system for all the data you will view in RAS.

🛜 RAS Mapper Options	×
Project Settings	Coordinate Reference System
Projection	Projection File: C:\Temp_RAS 2D Class\W - Creating a RAS Terrain\GISData\proj
General	Definition:
Render Mode	PROJCS["NAD_1983_StatePlane_Indiana_East_FIPS_1301_Feet",GEOGCS
Mesh Tolerances	["GCS_North_American_1983".DATUM["D_North_American_1983".SPHEROID ["GRS_1980",6378137.0,298.257222101]].PRIMEM["Greenwich".0.0],UNIT ["Degree".0.01745329251994331].PROJECTION["Transverse Mercator"].PARAMETER
Global Settings	["False_Easting", 328083.3333333333], PARAMETER
General	[["False_Northing", 820208, 333333333];PARAMETER["Central_Meridian",- 85.666666666666667];PARAMETER["Scale_Factor",0.99996666666666666667];PARAMETER ["Latitude_Of_Ongin",37.5],UNIT["Foot_US",0.3048006036012192],AUTHORITY
DAC Lawara	

- 5. Press **OK** to accept the file.
- 6. Select the **Project | Create New RAS Terrain** menu item (or **right-click Terrains** and choose the **Create a New RAS Terrain** menu item) to import the terrain model.
- 7. Click the "+" button to add files and navigate to the "Terrain" folder. Select the "base.tif" file.

ew Terrain Layer						
Set SRS Input Terrain Files (1	iles)					
+ Filename		Projection		Cell Size	Rounding	Info
Base tif		PROJCS["NAD83 / Indiana East (ft	US)",GEOGC	5	1/32	i
Output Terrain File						
Rounding (Precision): Vertical Conversion:	1/32 Use Input File (Default)	Create Stitches	☐ Merge	e Inputs to Si	ngle Raster	
Filename:	C:\Temp_RAS 2D Class	W - Creating a RAS Terrain\Terrain\	Terrain.hdf			
					Create	Cancel

8. Press the **Create** button. As the Terrain is created, a computation window will inform you of progress.

Creating Terrain 'Terrain'		
Computation Task	hh:mm:ss	^
<pre>Importing 1 of 1: Base.tif -> Terrain.Base.tif Step 1 of 1: File detected as valid RAS GeoTiff. Copying Base.tif Import Complete.</pre>	0 0	
Final Processing: Terrain.hdf Step 1 of 3: Creating Terrain.vrt Step 2 of 3: Creating Terrain.hdf	0	
Step 3 of 3: Creating Stitch-TIN for merging rasters	2	
]		\vee
	Close	

- 9. **Double-click** on the **Terrain** Layer to access its Properties.
- 10. Click on the **Plot Hillshade** option. Play with the **Z Factor** to find a value you prefer.
- 11. Click on the **Plot Contours** option. Play with the **Interval**. Experiment with the option until the terrain looks good to you.

Note the presence of high ground in the middle of the channel at bridge locations.

2.2.4 Creating a RAS Terrain from Multiple Datasets

This task will take you through the process of creating a RAS Terrain from 2 different terrain models: channel data and overbank terrain, in order to capture the channel geometry where there is currently high ground at the bridge locations.

Create Grid of Channel Data

- 1. Open RAS Mapper
- 2. Select the Project | Create New RAS Terrain menu item
- 3. You will have to add to 2 different files. Make sure that the "priority" is set properly. The top layer should be the channel geometry, followed by the overbank. If you add them in the wrong order, you can reprioritize them by highlighting on of them, and clicking the up or down arrows on the left-hand side of the menu.
 - a. Add the "Channel.tif"b. Add the "Base.tif"

ew Terrain Layer					
Set SRS Input Terrain Files (2	l files)				
+ Filename		Projection	Cell Size	Rounding	Info
X Channel.trf		PROJCS["NAD_1983_StatePlane_Indiana_East		(na)	i
Base.tif		PROJCS["NAD83 / Indiana East (ftUS)",GEOGC	5	1/32	i
•					
Output Terrain File): 1/32	☑ IF Create Stitches	e Inputs to Sir	ngle Raster	_
Output Terrain File - Rounding (Precision)		✓ Create Stitches ✓ Merge	e Inputs to Sir	ngle Raster	
Output Terrain File – Rounding (Precision) Vertical Conversion: Filename:	Use Input File (Default)		-	ngle Raster	

- 4. Change the output filename to "**WithChannel**" by clicking the open folder icon in the bottom right corner of the menu. Enter the new name, and click **save**.
- 5. Press the **Create** button.

Computation Task	hh:mm	ss	^
Importing 1 of 2: Channel.tif -> WithChannel.Channel.tif			
Step 1 of 1: File detected as valid RAS GeoTiff. Copying		0	
Channel.tif Import Complete.		0	
Importing 2 of 2: Base.tif -> WithChannel.Base.tif			
Step 1 of 1: File detected as valid RAS GeoTiff. Copying		0	
Base.tif Import Complete.		0	
Final Processing: WithChannel.hdf			
Step 1 of 3: Creating WithChannel.vrt		0	
Step 2 of 3: Creating WithChannel.hdf Step 3 of 3: Creating Stitch-TIN for merging rasters		1	
Step 3 of 3: creating Stitcu-lin for merging rasters			
Terrain Complete	1	2	
			\vee

- 6.
- 7. Change the **Layer Properties** for the "WithChannel" Terrain.
- 8. Turn on the **Plot stitch TIN edges** for the "WithChannel" Terrain.

9. Investigate the stitching – a TIN which is the interpolation between the in-channel data and the overbank data. Compare with the base Terrain model.

10. Compare the two terrain models (with and without bridge elevations).

2.3 Terrain Modification

2.3.1 Objective

In this tutorial, you will learn how to modify terrain models for use in HEC-RAS. You will learn how to create channel data to merge with overbank data from an existing RAS model and how to use the terrain modification tools.

2.3.2 Background

You will be working with terrain data for a section of the White River at Muncie, IN. The data required for the tutorial is provided in the zip file below.

2.3.3 Merging XS Channel Data with Overbank Data

This task will take you through the process of merging channel cross section information with terrain data. This process simulates the situation where you have bathymetric data represented in cross sections to replace overwater elevations gathered using LiDAR.

Create Grid of Channel Data

- 1. Start HEC-RAS and **open** the project titled "Terrain Modification".
- 2. Open RAS Mapper
- 3. Create a New RAS Terrain using the "base.tif". Note the presence of high ground in the middle of the channel at bridge locations.

4. **Turn on** the **Rivers**, **Bank Lines**, and **Cross Sections** Layers. These are the Layers that are used for creating the Interpolation Surface.

If the Bank Lines layer is missing. You can create bank lines from the cross section banks stations.
 a. Start Editing

b. Right-click on the Bank Lines Layer and choose Compute Bank Lines from XS Bank Stations.

- 🔽 Bank Linee	
🗖 Flow P: 🔡	Layer Properties
⊡ ⊡ River S ⊡ ☑ Cross Sect	Stop Editing
□ Bank S ▼ Edge Li	Compute Bank Lines from XS Bank Stations
	Pull Rank Lines to Rank Stations

- 6. Note any problems with the bank lines. Improve the bank lines to do a better job representing the channel. For instance, the river line should not intersect the bank lines.
- 7. Right-click on the **Interpolation Surface** and select **Compute XS Interpolation Surface**. Turn in on. The Interpolation Surface is used in making the results maps and will be used to create the new channel raster data.

8. Stop Editing.

9. Right-click on the geometry and choose Export Layer | Create GeoTIFF from XS's (channel only)

- 10. Provide a **filename** ("channel") and press **Save**.
- 11. Enter a raster cell size in the next dialog (this will depend on the size of your channel. Enter 5 (ft).

Merge Terrain Data

- 1. Create a New RAS Terrain.
- You will have to browse to 2 different files. Make sure that the "priority" is set properly.
 a. Add the "channel.tif"

b. Add the "base.tif"

Input Terrain Files (21	illes)				
+ Filename		Projection	Cell Size	Rounding	Info
		PROJCS["NAD_1983_StatePlane_Indiana_East		(na)	i
Base.tif		PROJCS["NAD83 / Indiana East (ftUS)",GEOGC	5	1/32	i
_					
•					
◆ Output Terrain File	1/32	▼ Create Stitches	e Inputs to Si	ingle Raster	
Output Terrain File Rounding (Precision): Vertical Conversion:	1/32 Use Input File (Default)	▼ Create Stitches	e Inputs to Si	ingle Raster	

- 3. Change the output filename to "WithChannel".
- 4. Press the Create button.

- 5. Change the Layer Properties for the "WithChannel" Terrain.
- 6. Turn on the **Plot stitch TIN edges** for the "WithChannel" Terrain.
- 7. Investigate the stitching a TIN which is the interpolation between the in-channel data and the overbank data. Compare with the base Terrain model.

8. Compare the two terrain models (with and without bridge elevations).

2.3.4 Channel Modification Tools

This task will take you through the process of cloning a RAS Terrain and using the Channel Modification tools to change the ground surface elevations for modeling.

Clone the RAS Terrain

Cloning the RAS Terrain allows you to reuse datasets. You don't have "make a copy", rather we create a new terrain file for the modifications but point to the base terrain.

- 1. Right-click on the "WithChannel" Terrain and choose "Clone Terrain".
- 2. Provide a name (like "Clone") and press OK.
- 3. Turn on the cloned terrain.

Add Piers

- 1. Zoom into one of the bridge crossings (**View = Simple Pier**).
- 2. Right-click on the Clone and choose Add New Modification Layer | Shapes | Circle/Ellipse.

				· · · · · · · · · · · · · · · · · · ·		-
Terrains						
Terrain						
WithChannel						
WithChanne		e				
		Image Display Properties				
	X	Rename Terrain				
	G	Clone Terrain (Virtual)				
	٩	Add New Modification Layer	•	Shapes I		Circle/Ellipse
	⊻	Generate New RAS Terrain	•	Lines	•	Rectangle
	।ତ୍ର	Zoom to Layer		Polygons	•	Triangle
	63	Add Watch to Laver Values				Elongated Pier

- 3. Add a name for the layer "**Simple Piers**".
- 4. Add two piers with 16ft radius with a top elevation of 950ft.

Ellipse Editor	
Circle C Ellip	se
Name:	Pier 1
Modification Method:	Replace Terrain Value
Elevation (ft):	950
Radius:	16
ОК	Cancel Apply

Add Elongated Pier

- 1. Zoom into one of the bridge crossings (View = Elongated Pier).
- 2. Right-click on the Clone and choose Add New Modification Layer | Shapes | Elongated Pier.
- 3. Add a name for the layer "Piers".
- 4. Add a pier **20ft** wide, **100ft** long, at elevation **955ft**. Use round nose with a **10ft** radius.

🖳 Pier Editor			\times
Name:	Pier 1		
Modification Method:	Replace Terrain Value 💌		
Elevation (ft):	955		
Rotation Angle (Degrees):	0		
Width (ft):	20		
Pier Shape			
Vse Rectangular Body	Use Pier Nose	Use Pier Nos	e
	Round 💌	Round	•
Length (ft): 100	Radius (ft): 10	Radius (ft):	10
	ОК	Cancel A	pply

5. Use the edit tool to **rotate** the pier in line with flow.

Add a Levee

- 1. Zoom into one of the levee locations between the two bridges crossings (View = Levee).
- 2. Right-click on the Clone and choose Add New Modification Layer | Lines | High Ground.
- 3. Create a levee/floodwall alignment from the upper bridge to the lower bridge.
- 4. Set up the levee information as show below.

5. Press **OK** to accept the information.

6. Evaluate how the terrain has changed.

Add a Detention Pond

- 1. Zoom into one of the levee locations between the two bridges crossings (View = Wetland).
- 2. Right-click on the Clone and choose Add New Modification Layer | Polygons | Multipoint.
- 3. Provide a name like "Wetland"

4. Add a polygon – use the "Use Elevations at Boundary from Terrain" option.

Polygon Editor	
Name:	Polygon 1
Modification Method:	Replace Terrain Value
✓ Use Elevations at Bou Elevation (ft):	Indary from Terrain
Snapping Tolerance (ft):	20
ОК	Cancel Apply

- 5. Note what the terrain model looks like.
- 6. Now add Elevation Control Points to lower the terrain inside the polygon.
 - a. Expand the Wetland modification to see the "Control Points" layer.
 - b. Add control points and enter elevations around **930ft** with a low spot on the downstream end of **925ft**.

7. Evaluate the terrain model.

2.4 Floodway Encroachment Analysis - 1D Unsteady Flow

This tutorial demonstrates the approach to performing Floodway Encroachment Analysis for a simple 1D HEC-RAS example application.

i	This is a new feature in HEC-F	S Version 6.4.
A	Project Files	
	Exampleents.zip	

2.4.1 Overview

HEC-RAS is the primary river hydraulics software used to perform Floodway Encroachment Analysis for FEMA. Floodway encroachment analysis is used to determine guidelines for allowable development withing the floodplain fringe. FEMA guidance dictates that the model analysis be performed using the 100-yr floodplain and limits development within the the floodplain based on the impact to the computed water surface profile. Historically, this capability in HEC-RAS was limited to Steady Flow analysis. Version 6.4 introduces the ability to perform this analysis with Unsteady Flow.

This example utilizes a simple 1D model developed for the Merced River in the Yosemite Valley. Terrain data used in this model was downloaded from the USGS NED and has been resampled. This model is not intended to be used to make floodplain management or engineering decisions, but simply to demonstrate the procedure for performing an encroachment analysis on a 1D model.

This example will take you through the procedure outlined below.

- Create a Calibrated model
- Save the Base plan to an Encroached plan
- Enter data into the Encroachment Table
- Perform the Encroached run
- Analyze results
- Refine the encroachment data
- Perform final model simulation using Method 1 or Encroachment Regions

2.4.2 Steps

1. Open the HEC-RAS project "Encroachments_1Dunsteady"

Prior to beginning a Floodway Encroachment Analysis, the river hydraulics model should be calibrated to and validated with observed data. The downstream boundary condition for the model should utilize the Normal Depth boundary condition as it will allow for a changed stage as the flow hydrograph changes due to the encroachment. The model developed for this floodplain will be referred to herein as the **Base** Plan.

🚟 HEC-RAS 6.	4	– 🗆 X
File Edit Ru	in View Options GIS Tools Help	
F	<u>+</u>	♥▼≝≓Ľ₿⊾♥≝≣≣₽¤∞∞
Project:	Encroachments_1DUnsteady	C:\\Floodways\Example_1DUnsteadyEncroachments\Encroachments_1DUnsteady.prj
Plan:	Encroached 1D Unsteady	C:\\Floodways\Example_1DUnsteadyEncroachments\Encroachments_1DUnsteady.p02
Geometry:	Base Geometry	C:\\Floodways\Example_1DUnsteadyEncroachments\Encroachments_1DUnsteady.g01
Steady Flow:		
Unsteady Flow:	Unsteady Hydrograph	C:\\Floodways\Example_1DUnsteadyEncroachments\Encroachments_1DUnsteady.u01
Description:		US Customary Units

ile Op	ptions Help		
an: Eno	roached 1D Unsteady	Y Short ID: Encroached 1D	
	Geometry File:	Base Geometry	
	Unsteady Flow Fil	le: Unsteady Hydrograph	T
Program	ms to Run	Plan Description	
	metry Preprocessor teady Flow Simulation Sediment t Processor	n	^
-	odplain Mapping		~
	ion Time Window	31DEC 1996 Starting Time: 0000	_
	Ending Date:	05JAN 1997 Ending Time: 0000	-
	tation Settings		_
	tation Interval:	1 Minute - Hydrograph Output Interval: 1 Hour	-
Mapping	g Output Interval:	1 Hour Detailed Output Interval: 1 Hour	
Project	t DSS Filename: 💌	C:\Users\q0heccta\Documents_Support\Floodways\Exampl	
			-

2. Open the Unsteady Flow Analysis Dialog

- 3. **Compute** the Base plan.
- 4. Copy the Base plan using the **File | Save Plan As** menu item on the **Unsteady Flow Analysis** dialog. Provide a new name for the encroached plan and hit okay, in the dialog. Provide a ShortID for the new plan.

(i) The Encroached plan must utilize the identical geometry as the Base plan.

5. Access the Unsteady Flow Encroachment Table from the **Unsteady Flow Analysis** dialog **Options** | **Unsteady Encroachments** menu item.

	1	•	achment Anal "Refined 1D". "		nsteady plan that i	 Short ID: uses this sam 	,	r.	Target	WS Rise:			
roachments by Re	gions (Developed/	Edited in RA	S Mapper Win	ndow)									
lo Regions pres	ent in this plan.				View Errors w Delete R	ith Regions . egions			errain Modificatior on Terrain Modific				
roachment Table F ver: (All Riven each:	-		incroachments	from Stead	y Flow Plan	Minimum B	Bank Offset			eyance Redu	uction	•	
elected Area Globa Add Constant		Multiply Fact	tor		Set Values			ion Parameter Trials (0-100)					
Add Constant	Location	Multiply Fact	tor Encroachme		Set Values		Number of			Method 4	м	lethod 5	
Add Constant River	Location Reach	RS			Set Values Method (1-5)	Maximum	Number of	Trials (0-100) Method 2	: 20		M Initial K Rise WS	lethod 5 WS Limit	EGL
Add Constant River Merced River	Location Reach Yosemite Valley	RS 5.78	Encroachme	ent Regions		Maximum Metho	Number of	Trials (0-100) Method 2	: 20 Method 3				EGL
Add Constant River Merced River Merced River	Location Reach Yosemite Valley Yosemite Valley	RS 5.78 5.73	Encroachme	ent Regions		Maximum Metho	Number of	Trials (0-100) Method 2	: 20 Method 3				EGL
Add Constant River Merced River Merced River Merced River	Location Reach Yosemite Valley Yosemite Valley Yosemite Valley	RS 5.78 5.73 5.67	Encroachme	ent Regions		Maximum Metho	Number of	Trials (0-100) Method 2	: 20 Method 3				EGL
Add Constant River 1 Merced River 2 Merced River 3 Merced River 4 Merced River	Location Reach Yosemite Valley Yosemite Valley Yosemite Valley Yosemite Valley	RS 5.78 5.73 5.67 5.58	Encroachme	ent Regions		Maximum Metho	Number of	Trials (0-100) Method 2	: 20 Method 3				EGL
Add Constant River 1 Merced River 2 Merced River 3 Merced River 4 Merced River 5 Merced River	Location Reach Yosemite Valley Yosemite Valley Yosemite Valley Yosemite Valley	RS 5.78 5.73 5.67 5.58 5.52	Encroachme	ent Regions		Maximum Metho	Number of	Trials (0-100) Method 2	: 20 Method 3				EGL
Add Constant River 1 Merced River 2 Merced River 3 Merced River 4 Merced River 5 Merced River 6 Merced River	Location Reach Yosemite Valley Yosemite Valley Yosemite Valley Yosemite Valley Yosemite Valley	RS 5.78 5.73 5.67 5.58 5.52 5.48	Encroachme	ent Regions		Maximum Metho	Number of	Trials (0-100) Method 2	: 20 Method 3				EGL
Add Constant River 1 Merced River 2 Merced River 3 Merced River 4 Merced River 5 Merced River 6 Merced River 7 Merced River	Location Reach Yosemite Valley Yosemite Valley Yosemite Valley Yosemite Valley Yosemite Valley Yosemite Valley	RS 5.78 5.73 5.67 5.58 5.52 5.48 5.38	Encroachme	ent Regions		Maximum Metho	Number of	Trials (0-100) Method 2	: 20 Method 3				EGL
Add Constant River 1 Merced River 2 Merced River 3 Merced River 4 Merced River 5 Merced River 6 Merced River 8 Merced River	Location Reach Yosemite Valley Yosemite Valley Yosemite Valley Yosemite Valley Yosemite Valley Yosemite Valley Yosemite Valley	RS 5.78 5.73 5.67 5.58 5.52 5.48 5.38 5.33	Encroachme	ent Regions		Maximum Metho	Number of	Trials (0-100) Method 2	: 20 Method 3				EGL
Add Constant River 1 Merced River 2 Merced River 3 Merced River 4 Merced River 5 Merced River 6 Merced River 7 Merced River	Location Reach Yosemite Valley Yosemite Valley Yosemite Valley Yosemite Valley Yosemite Valley Yosemite Valley Yosemite Valley Yosemite Valley	RS 5.78 5.73 5.67 5.58 5.52 5.48 5.38	Encroachme	ent Regions		Maximum Metho	Number of	Trials (0-100) Method 2	: 20 Method 3				EGL

6. Enable the encroachment analysis by selecting the **Base Plan for Encroachments**.

Base Plan for Encroachments:	Base 1D Unsteady	•	Short ID:	Base 1DUnsteady
	Current Geometry is "Refined 1D". There is 1 unsteady plan t	hat use	es this same g	eometry.
Set the Target W	S Rise to 1.0ft.			

1.0

Target WS Rise:

7.

The Target WS Rise is the maximum allowable change to the computed water surface. The National standard is 1.0ft, but may be less than that in based on State, County, or Community regulations. For

locations that follow a "no rise" that is equivalent to a Target WS Rise of 0ft and indicates that the computed water surface elevation should not be impacted by the proposed floodplain encroachment.

- 8. Set the Fill Slope on Terrain Modifications to 0.001.
- 9. Set the Minimum Bank Offset Distance to 20ft.

Minimum Bank Offset Distance: 20

The bank offset will provide a buffer to to the channel by not allowing encroachment near the river banks. 10. Set the Encroachment table to utilize **Method 5**

4

- a. Initial K Rise WS = 0.7 ft
- b. **WS Limit** = **1.0** ft
- c. **EG Limit = 1.0** ft

	l	Location		Encroachme	ent Regions		Meth	od 1	Method 2	Method 3	Method 4		Method 5		
	River	Reach	RS	StaL	StaR	Method (1-5)	StaL	StaR	Top Width	K Reduction(%)	K Rise WS	Initial K Rise WS	WS Limit	EG Limit	
1	Merced River	Yosemite Valley	5.78			5						0.7	1.0	1.0	
2	Merced River	Yosemite Valley	5.73			5						0.7	1.0	1.0	
3	Merced River	Yosemite Valley	5.67			5						0.7	1.0	1.0	
4	Merced River	Yosemite Valley	5.58			5						0.7	1.0	1.0	
5	Merced River	Yosemite Valley	5.52			5						0.7	1.0	1.0	
6	Merced River	Yosemite Valley	5.48			5						0.7	1.0	1.0	

11. Set the Maximum Number of Trials to 4.

Maximum Number of Trials (0-100):

- 12. Press **OK** to save the encroachment data.
- 13. **Compute** the Encroached plan.

As the plan runs, you will be provided status on the the Trials.

Unsteady Input Summary: 1D Unsteady Finite Difference Numerical Solution 1D Unsteady Encroachments.
Unsteady Encroachment Trial # 1
Unsteady Encroachment Trial # 2
Unsteady Encroachment Trial # 3
Unsteady Encroachment Trial # 4

14. Open RAS Mapper

15. Utilize the capabilities in RAS Mapper to **evaluate the encroachment results** through profile Plots, Tables and geospatial Mapping.

a. Encroachment Regions

Encroachment Regions are automatically built for the plan Results and give you a visualization of the

b. Profile Plot

The Profile Plot is accessed by choosing the **Encroachment Regions** Layer **Plot Encroachment Results Profile** menu item. The Profile Plot shows a comparison of the Base and Encroached water surface profile as well as the difference between the two plots. Further, the Target WS Rise is shown along with the WS difference plot, indicating where areas along the river where refinement is required.

c. Encroachment Table

The Encroachment Table is accessed by choosing the **Encroachment Regions** Layer **Show Encroachment Table Results** menu item. There are many variables available from the Encroachment Results Table, including the Left and Right Encroachment Stations, Base and Encroached water surface elevations, and difference in water surface elevations. The table is

ive	: (All Rivers)		 Reach: 	(All Reaches)				 Select Col 	umr
	River	Reach	River Sta	Left Station (ft)	Right Station (ft)	Base WSE (ft)	Encroached WSE (ft)	Delta WSE (Encr - Base) (ft)	
•	1 Merced River	Yosemite Valley	5.78	527.5	669.8	4019.61	4020.86	1.25	
	2 Merced River	Yosemite Valley	5.73	742.1	903	4016.85	4017.31	0.46	
	3 Merced River	Yosemite Valley	5.67	808.5	1271.6	4013.32	4014.59	1.27	
	4 Merced River	Yosemite Valley	5.58	1220.089	1411.6	4005.13	4005.74	0.61	
	5 Merced River	Yosemite Valley	5.52	1267.6	1527.545	4000.37	4001.15	0.78	
	6 Merced River	Yosemite Valley	5.48	1359.3	1708.75	3998.7	3999.84	1.14	
	7 Merced River	Yosemite Valley	5.38	1516.841	1704.35	3995.1	3995.14	0.04	
L									Þ

	customizable to	see the	variables	of interest.
--	-----------------	---------	-----------	--------------

d. Encroachment Surcharge

The Encroachment Surcharge map is automatically added to the Encroached simulation results. The surface map allows you to quickly spatially identify locations where the water surface elevations changes more than the allowable (as specified by the Target WS Rise). Analysis of the Surcharge map while editing the Encroachment Regions will allow the user to improve the floodway encroachment boundaries.

e. Terrain

A new Terrain (*Terrain_5ft.Encroached1D.Encr*) was created and associated with the Encroached plan during the simulation. This Terrain is Clone of the terrain used for the Base plan; however, a Terrain Modification was added based on the determination of the encroachment boundary and the Target WS Rise. This new Terrain shows you what would be filled in, should the floodway fringe be build out.

- 16. In RAS Mapper, expand the Plans group, Encroached plan, and show the Encroachment Regions
- 17. Start Editing the Encroachment Regions
- Right-Click on the Encroachment Regions layer and choose the Generate Floodway Encroachment Polygons | From 1D Encroachments menu item and select the Encroached plan. This will create Encroachment Regions based on the simulation results (as shown in the Results/Plan layer).
- 19. Use the Encroachment Surcharge map to inform editing the Encroachment Regions.

	Selected: 'Encroachment Regions'	and the second second
the second second		Sec. 5
Martin		
	A STANCE	Altra High
Farl No	- 74/2	HALL MAN
	and a Maximum for	
S / Parts /	in a Child	
		2000 ft

20. When finished editing the Encroachment Regions, **Stop Editing**.

Save Edits (Encroach	ment Regions)			×
🔔 Do you wa	nt to Save Edits for 'E	ncroachm	ent Regions'?	
	Yes	No	Cancel	

21. **Open** the **Unsteady Encroachment data editor**. Make note that the options for the Encroachment Regions is now active and the portion of the table for Method 1-5 is greyed out. Encroachments by Regions (Developed/Edited in RAS Mapper Window)

2 Regions - Intersected 104/104 X5s	View Errors with Regions	Fill Slope on Terrain Modifications:	0.001
	Delete Regions	Addiitonal Fill on Terrain Modifications:	

22. **Compute** the Encroachment plan.

The previous RAS Terrain will be replaced with a new RAS Terrain that reflects the Encroachment Regions
 Evaluate the results in RAS Mapper using the Surcharge map.

25. Continue to refine the encroachment polygons in RAS Mapper as desired and re-computing the floodway analysis.

2.5 Flow Hydrograph Optimization

This tutorial demonstrates the approach to using the Flow Hydrograph Optimization capability for a simple HEC-RAS 2D model example application.

() This is a new feature in HEC-RAS Version 6.4.

▲	
	Example_Fation.zip

2.5.1 Overview

The flow hydrograph optimization capability in HEC-RAS is use to scale flow hydrograph boundary conditions to achieve a desired stage or flow at a specified location in the model. This feature can be used for both 1D and 2D unsteady flow modeling by specifying a Reference Location to be used for the optimization.

This example utilizes a simple 2D model developed for the Merced River in the Yosemite Valley. Terrain data used in this model was downloaded from the USGS NED and has been resampled. This model is not intended to be used to make floodplain management or engineering decisions, but simply to demonstrate the procedure for utilizing the flow hydrograph optimization capability in HEC-RAS. For this example, the goal will be to determine how much flow begins to flood a parking lot on the north side of the river near the Village Store.

This example will take you through the procedure outlined below.

- Identify and create a Reference Location
- Enter Flow Hydrograph Optimization information
- Perform the Flow Hydrograph Optimization simulation
- Review Results

2.5.2 Steps

1. Open the HEC-RAS project "Example Hydrograph Flow Optimization"

Prior to utilizing the flow hydrograph optimization capability, you should confirm that the model is stable (and accurate) for a range of flows.

(and account		
HEC-RAS 6	4	- 🗆 X
File Edit Ru	un View Options GIS Tools Help	
B	<u>+++++++++++++++++++++++++++++++++++++</u>	◕ ▾◗◾⊨∟◙⊾◛ ◰▯▯▯°▫ऽऽ
Project:	Example Hydrograph Flow Optimization	C:_Support\FlowOptimization\Example_FlowOptimization\HydroFlowOptimization.prj
Plan:	Base	C:\\Support\FlowOptimization\Example_FlowOptimization\HydroFlowOptimization.p01
Geometry:	Base2D	C:\\Support\FlowOptimization\Example_FlowOptimization\HydroFlowOptimization.g01
Steady Flow:		
Unsteady Flow:	Flood	C:\\Support\FlowOptimization\Example_FlowOptimization\HydroFlowOptimization.u01
Description:		🗧 US Customary Units

Plan: Base		Short ID: Base		_
ian, pose		SHOTE ID: Dose		_
Geometry File:	Base2D			•
Unsteady Flow File:	Flood			•
Programs to Run	Plan Description			
 ✓ Geometry Preprocessor ✓ Unsteady Flow Simulation ☐ Sediment ✓ Post Processor 				^
Floodplain Mapping				V
Simulation Time Window Starting Date: 3	1dec 1996	Starting Time:	0000	_
je je	5jan 1997	Ending Time:	0000	_
Computation Settings				
Computation Interval: 1	Minute 💌	Hydrograph Output Interval:	10 Minute	•
Mapping Output Interval: 1	0 Minute 💌	Detailed Output Interval:	1 Hour	•
Project DSS Filename:	:\Users\q0heccta\D	ocuments_Support\FlowOptimiz	ation 👍 🖻	
· · ·				_
Computation Interval: 1 Mapping Output Interval: 1	0 Minute 💌	Detailed Output Interval:	1 Hour	•

2. Open the Unsteady Flow Analysis dialog.

- 3. **Compute** the Base plan.
- 4. Open **RAS Mapper** and investigate the model to see what the computed water surface is and the Terrain elevation at the low point along the road that protects the parking lot.

Once you have identified the location of the low point and recorded the elevation, you are ready to create a reference location.

- 5. Select the Base2D Geometry
- 6. Start Editing
- 7. Select the **Reference Point** layer
- 8. Add a the selected reference location using the **Add New Feature** tool.

9. Provide a **Name** for the Reference Point

Same Reference Point		×
Provide a unique name for the Reference Point		
LowPointOnRoad		
	ОК	Cancel

10. Stop Editing

11. Copy the Base plan using the **File** | **Save Plan As** menu item on the **Unsteady Flow Analysis** dialog. Provide a new name for the flow optimization plan and hit okay, in the dialog. Provide a ShortID for the new plan.

(i) It is not required to create a new Plan; however, by creating an additional plan, you will be able to compare results.

12. Access the flow optimization data entry from the **Unsteady Flow Analysis** dialog **Options | Automated Flow Optimization** menu item.

Automated Flow Ratio Op	timization
Flow Optimization Mode:	None (off)
- Optimization Parameters	
Reference Location:	_
Target Value:	3963.5 (units)
Tolerance:	0.1 (units)
Initial Flow Ratio:	1.
Minimum Flow Ratio:	0.5
Maximum Flow Ratio:	1.
Maximum number of Trials:	10
Flow Hydrographs to Scale C All flow hydrographs Selected flow hydrograph Restart Approach Re-use Initial Conditions Recompute Each Trial	
	Cancel
Set the Flow Optimization	on Mode to Stage.
Flow Optimization Mode	: Stage
Set the Reference Locat	ion to the Reference Point.
Reference Location:	Ref Point: LowPointOnRoad
Sot the Target Value has	od the low elevation of the Terrain

15. Set the **Target Value** based the low elevation of the Terrain.

16. Select the remainder of the Optimization Parameters. The remainder of the parameters can be set as desired, depending on how you want to limit the

optimization approach and number of simulations.

Optimization Parameters		
Reference Location:	Ref Point: LowPointOnRoad	•
Target Value:	3967. (ft)	
Tolerance:	0.1 (ft)	
Initial Flow Ratio:	1.	
Minimum Flow Ratio:	0.5	
Maximum Flow Ratio:	4.	
Maximum number of Trials:	10	

- 17. In this example, we only have one hydrograph to scale, so you can use the **All** option (or select the hydrograph).
- 18. Leave the Restart Approach to the default method.
- 19. Press **OK** to save the optimization information.
- 20. The **Unsteady Flow Analysis** dialog will now show a quick link that **Automatic Flow Ratio Optimization** has been enabled.

Automated Flow Ratio Optimization

21. **Compute** the Optimization plan.

As the plan runs, you will be provided a status on the Trials.

Unsteady Input Summary: 2D Unsteady Diffusion Wave Equation Set (fastest) 2D number of Solver Cores: 8 Hydro Flow Optimization Stage, Target 3967.00 ft at LowPointOnRoad			
Hydro Flow Optimization Trial # 1 Optimization trial # 1 Ratio 1.000 Difference 1.765 Target 3967.0	0 Computed 3968.76		
Hydro Flow Optimization Trial # 2 Optimization trial # 2 Ratio 0.833 Difference 1.037 Target 3967.0	0 Computed 3968.04		
Hydro Flow Optimization Trial # 3 Optimization trial # 3 Ratio 0.500 Difference -0.532 Target 3967.0	00 Computed 3966.47		
Hydro Flow Optimization Trial # 4 Optimization trial # 4 Ratio 0.613 Difference 0.062 Target 3967.0	0 Computed 3967.06		
Hydro Flow Optimization Converged Trial # 4 Ratio 0.613			

22. Evaluate results using the Hydrograph Plot

(i) To compare results at the Reference Point, you will need to re-run the Base plan. (The Reference Point is new to the Base run.

- a. From the Hydrograph Plot, choose the Type | Reference Point
- b. Select the **Options | Plans** menu item

c. Select the Base plan to compare against

Note from the output and the hydrograph plot, the Optimization did not quite get to the desired Stage (even though it was within the specified tolerance). Therefore, if you truly did not want the water surface higher than specified Target, you may need to lower the Target by the tolerance. This will be variable on how the flow optimization final solution approaches the desired Target.

23. Open RAS Mapper to evaluate results

Note that the flow optimization was able to successfully scale the hydrograph to keep the desired location dry.

24. To access the Trial results, expand the Plan node to the **Flow Optimization** layer. The Flow Optimization layer can be used to identify the Reference Location and the hydrographs that were scaled. All boundary conditions are shown. Those that were used in the analysis ("Inflow" in the figure below) are shown in the

25. Right-click on the Flow Optimization | View Flow Optimization Plot to show you the optimization results for the Flow Ratio and Target by Trial.

2.6 2D Rules

The Rules capability in HEC-RAS unsteady flow modeling is extremely powerful. This tutorial will walk the user through using the Rules capability within the 2D modeling framework.

2.6.1 Overview

This example will demonstrate the use of the Rules capability to adjust gate settings for a 2D model that has a tidal boundary condition. The river used for the example has flow going from north to south - an inflow hydrograph is used for the **Upstream** boundary and a tidal stage boundary for the **Downstream** boundary condition. Gates are used to represent the culvert opening under the road crossing (**Street**) and is modeled using a 2D Connection. For the simple 2D model shown below, a 2D Flow Area has already been created with the road crossing.

The road crossing is modeled with a 2D Connection with the weir elevation set to the top of road elevation and three sluice gates $(5' \times 5')$ used to model the culverts.

The objective of the rule set described below is to hinder the intrusion of brackish water inland. Therefore, for the gates are closed if the downstream water surface elevation is too high and to be open the water surface upstream must be higher than the downstream water level. The (relatively simple) specific Gate Rules are defined below.

(i) Gate Rules

- Gates OPEN when the Headwater elevation is greater than Tailwater by 0.7ft for more than 2min
- Gates CLOSE when the Tailwater elevation is greater than 3.5ft for more than 5min.

Reference Locations can be used in RAS to monitor Headwater and Tailwater water surface elevations.

This example will begin will a running model and take you through the process listed below.

- Adding Reference Points
- Entering Rule Operations
- Visualizing Output
- Evaluating Results

2.6.2 Getting Started

1. Open the HEC-RAS project "2DRulesExample"

🚼 HEC-RAS 6.4	4	- 🗆 X
File Edit Ru	in View Options GIS Tools Help Debug	
F	<u>+</u>	≝록≠≠≠∠®⊾∀⊻∎≣≊oss 🖼
Project:	2D Rules Example	C:\Users\q0heccta\Documents_Support\Examples\2D Rules Example\2DRulesExample.prj
Plan:	NoRules	C:\Users\q0heccta\Documents_Support\Examples\2D Rules Example\2DRulesExample.p01
Geometry:	Geometry with Gates	C:\Users\q0heccta\Documents_Support\Examples\2D Rules Example\2DRulesExample.g01
Steady Flow:		
Unsteady Flow:	Flow - NoRules	C:\Users\q0heccta\Documents_Support\Examples\2D Rules Example\2DRulesExample.u01
Description:		US Customary Units

		_	
lan: NoRules		Short ID: NoRules	
Geometry File:	Geometry with Ga	ites	
Unsteady Flow File:	Flow - NoRules		
Programs to Run			
Geometry Preprocessor			
✓ Unsteady Flow Simulation			
Sediment			
Post Processor			
Floodplain Mapping			~
Simulation Time Window			
Starting Date:	25JUN2022	Starting Time:	0600
Ending Date:	25JUN2022	Ending Time:	24:00
Computation Settings			
Computation Interval:	5 Second 💌 …	Hydrograph Output Interval:	1 Minute
Mapping Output Interval:	1 Minute 💌	Detailed Output Interval:	1 Minute
Project DSS Filename: 💌	C:\Users\q0heccta\D	ocuments_Support\Examples\2	D Rule: 🗃

2. Open the **Unsteady Flow Analysis** Dialog

3. **Compute** the *NoRules* plan. Note that the Tailwater Stage is higher than the headwater on the rising and falling limbs of the flow hydrograph.

2.6.3 Add Reference Points

1. Open RAS Mapper - you need to add Reference Locations

2. **Zoom** into the bridge

4. Select the Reference Points layer

- a. Add a Reference Point at the Headwater (HW) of the bridge
- b. Add a Reference Point as the Tailwater (**TW**) of the bridge

- 5. **Stop Editing** and Save Edits
- 6. Close RAS Mapper

2.6.4 Rule Operations for Gates

- 1. Open the Unsteady Flow Data dialog
 - a. Save the flow data using the File | Save Unsteady Flow Data As... menu item.
 - b. Provide a new name for the flow file (Flow Simple Rules)
- 2. Change the **Boundary Condition** for the Bridge (*Street*) by clicking on the **TS Gate Openings** and then clicking on the **Rules** button.

3. Choose Yes for the dialog asking if you would like to change the boundary condition.

4. The Rule Operations dialog will be displayed.

Rule Operations	s						
Description:							^ ~
		Gate P	arameters				
Location 1 Group #1	Open Rate (ft/min)	Close Rate (ft/min)	Max Opening	Min Opening	Initia	al Opening	
		Summary of Var	iable Initializations:				
User Variable		Descrip	ion			Initial Va	alue
		Rule O	perations				
row Op	peration						
		Enter/Edit Ru	le Operations		0	ОК	Cancel

5. Type in a general narrative the **Description** field.

Rule Operations

Gates CLOSE when the Tailwater elevation is greater than 3.5ft for more than 5min. Gates OPEN when the Headwater elevation is greater than Tailwater by 0.7ft for more than 2min	^	
	\sim	

6. Provide base **Gate Parameter** information for how the gates will operate. These gates will Open and Close at a rate of 1ft/min and will open to a maximum height of 3ft. The simulation will begin with the gates closed.

Gate Parameters							
Location	Open Rate (ft/min)	Close Rate (ft/min)	Max Opening	Min Opening	Initial Opening		
1 Group #1	1	1	3	0	0		

 Click on the Enter/Edit Rule Operations button to edit rules The Operation available are listed near the bottom of the editor
 Insert New Operation

Comment	New Variable	Get Sim Value	Set Operational Param	Branch (If/Else)	Math	Table

Press the **Comment** button to add a comment the rules set. Comments are helpful to remembering what you have done and to share information to other users.
 After pressing the comment button, a row will be added the Operations list. Type in your comment in the text box near the bottom of the Editor.

Operation Rules			
Rule Based Operations	Rule Font Size:	10 -	Bold Font
row Operation 1 ! ' This is a 2D Rules example using Reference Points			
Insert New Operation Comment New Variable Get Sim Value Set Operational Param Branch (If/Else) Math Table Comment		Disable	Copy description
Comment Text: This is a 2D Rules example using Reference Points			
Check Rule Set		OK	Cancel

- New operations are added ABOVE the selected line.
- Click the line below to continue.
- Delete will delete the selected line.
- Copy/paste can be used to move/duplicate lines.
- 9. Set up variables to monitor the simulation values. A summary of variables is provided below.

Variable Name	Description
HW_Stage	Stage of Headwater
TW_Stage	Stage of Tailwater
Timestep	Current Timestep
Time_TW_gt_3.5ft	Time that the Tailwater is greater than 3.5ft
Time_HWDiff_gt_0.7ft	Time that the Headwater - Tailwater is greater than 0.7ft
Done	Variable to monitor whether we have satisfied a rule (Done=1 is True)

10. Add the *HW_Stage* Simulation Variable by pressing the **Get Sim Value**.

Operation R	lules									
			Rule Based Operati	ions		Rule Fe	ont Size: 10 💌	Bold Font		
row	Operation									
1			using Reference Points							
2	"HVV_Stage" = Re	ference Points:V	WS Elevation(HW,Value	at current time step)						
-Insert New O	•					Current Selection Change				
Comment	t New Variable	Get Sim Value	Set Operational Param	Branch (If/Else) Math	Table	👗 🗈 🖺 🗙	Enable Disable	Copy description		
-Get Simulatio										
Assign Re	isult ng Variable	B-Inline Structur		Set Reference Point HW		Value at current time st	tep	-		
New Vi	-	B-Storage Areas		TW						
HW_Stage	2	B-Storage Area								
,		B-BC Lines								
		B-Reference Line	es							
		B-Reference Poi								
			on	 (Simulation variables in bo 	old are only a	available for the curren	t structure)			
				Ch	neck Rule Set .		OK	Cancel		
,										
а.	Enter the	New Var	iable name							
b.	Select the	Referen	nce Points W	VS Elevation						
				oint named HW	/					
				Unit named m	·					
•	ne next ro		list							
Repeat	for the TV	V_Stage								
Provide	e Commen	nts!								
Operation	Rules									
operation	T Nuico									
			Rule	Based Operations				Rule Font Size:	10	▼ Bold Font
row	Operation									
1	! ' This is a	2D Rules ex	ample using Referer	nce Points						
2	!									
3			ater and Tailwater W							
4				n(HW,Value at current ti n(TW,Value at current tin						
3	TW_Otage	Reference	r onito. WO Elevation	in it is a current th	ne step)					

14. Add add the *Timestep* variable by pressing the **Get Sim Value** a. Set the variable to the **Solution | Timestep**

11. 12. 13.

15. Convert the *Timestep* to seconds using the **Math** operation - HEC-RAS keeps track of simulation time in HOURS

16. Add the Time_TW_gt_3.5ft to monitor the Tailwater stage using the New Variable operation

17. Add the *Time_HWDiff_gt_0.7ft* to monitor the Headwater/Tailwater difference using the **New Variable** operation

-User Defined Variable De	claration	
User Variable Name:	ie_HWDiff_gt_0.7ft	
User Defined Variable Ty	<u>'pe</u>	Initial Value
Real (fractional nume	0	

- 18. Provide Comments for the variables
- 19. Create the **Done** Integer variable to keep track of the simulation to know whether we have set a gate instruction and to stop evaluating the remainder of the rules for the current timestep and
 - a. Set it to **0** using the Math operation
 - 13 ! Variable to keep track if we are Done! (True=1)
 - 14 Integer 'Done' (Initial Value = 0)
 - 15 'Done' = 0
- 20. Create the **OPEN GATE** operation
 - a. Create the first part of the rule to see if **Done** is True
 - 17 ! Gate OPENING: HW-TW>0.7ft
 - 18 If ('Done' = 0) Then
 - 19 End If

See operation steps ...

- Click on the Branch (If/Else) operation
- Select the If () Then option
 - Set the expression to **Done = 0**
- Click the next row
- Click the Branch (If/Else) operation
 - Select the End If option
- b. Evaluate the Headwater/Tailwater difference and set the time counter accordingly

```
! Gate OPENING: HW-TW>0.7ft
17
18
        If ('Done' = 0) Then
19
            If ('HW_Stage' > 'TW_Stage' + 0.7) Then
               'Time HWDiff_gt_0.7ft' = 'Time_HWDiff_gt_0.7ft' + 'Timestep'
20
21
            Else
22
               ! Reset the time counter
23
               'Time_HWDiff_gt_0.7ft' = 0
24
            End If
25
        End If
```

See operation steps ...

- Select the last End If row
- Click on the Branch (If/Else) operation
 - Set the expression to HW_Stage > TW_Stage + 0.7
- Click the Math operation
 - Set the expression to Time_HWDiff_gt_0.7ft = Time_HWDiff_gt_0.7ft + Timestep
- Click the next row
- Click the Branch (If/Else) operation
 - Select the Else option
- Click the next row
- Click the **Math** operation

- Set the expression to Time_HWDiff_gt_0.7ft = 0
- Click the next row
- Click the Branch (If/Else) operation
 - Select the End If option

```
c. Add the Gate Opening rule based on the Headwater Difference time counter previously evaluated
```

```
! Gate OPENING: HW-TW>0.7ft
17
18
        If ('Done' = 0) Then
19
            If ('HW Stage' > 'TW Stage' + 0.7) Then
20
               Time_HWDiff_gt_0.7ft' = 'Time_HWDiff_gt_0.7ft' + 'Timestep'
21
            Else
22
               ! Reset the time counter
23
               'Time HWDiff gt 0.7ft' = 0
            End If
24
25
            ! Start OPENING the Gates (120s = 2min)
26
            If ('Time_HWDiff_gt_0.7ft' > 120) Then
27
               Gate.Opening(Group #1) = 3
28
               ! Reset the Time counter for the HW evaluation
29
               'Time_TW_gt_3.5ft' = 0
               'Done' = 1
30
31
            End If
32
        End If
```

See operation steps ...

- Select the last End If row
- Click on the **Branch (If/Else)** operation
 - Set the expression to *Time_HWDiff_gt_0.7ft > 120*
- Click the Set Operational Parameter operation
- Set the expression to Gate.Opening = 3
- Click the next row
- Click the Math operation
 - Set the expression to Time_TW_gt_3.5ft = 0
- Click the next row
- Click the Math operation
 - Set the expression to Done = 1
- Click the next row
- Click the Branch (If/Else) operation
 - Select the End If option
- 21. Create the CLOSE GATE operation (repeat previous steps but evaluating the Tailwater condition)
 - 34 ! Gate CLOSURE: TW>3.5ft 35 If ('Done' = 0) Then 36 If ('TW_Stage' >= 3.5) Then 37 'Time TW gt 3.5ft' = 'Time TW gt 3.5ft' + 'Timestep' 38 Else 39 ! Reset the Time counter 40 'Time_TW_gt_3.5ft' = 0 41 End If 42 ! Start CLOSING the Gates (300s = 5min) 43 If ('Time_TW_gt_3.5ft' > 300) Then Gate.Opening(Group #1) = 0 44 45 ! Reset otherTime counter for the TW Evaluation 46 'Time_HWDiff_gt_0.7ft' = 0 47 'Done' = 1 48 End If 49 End If
- 22. Provide **Comments** in the Rule Operations where needed

23. Press the **Check Rule Set** button to evaluate the Rules. Hopefully, you there are no syntax error.

- 24. Press OK on the Operation Rules editor
- 25. Save the Unsteady Flow Data

2.6.5 View Output

- 1. Go to the Unsteady Flow Analysis dialog
- 2. **Save** the Plan, providing a name (Simple Rules). Provide a ShortID for the new plan.
- 3. **Compute** the Simple Rules plan
- 4. Evaluate the simulation results using the Hydrograph Plot

Note that the Tailwater no longer gets higher than the headwater

5. If you turn on Flow, you can see flow mostly "positive" in the downstream direction. Without the rules there was significant negative flows (flows going upstream based on the high tide).

- 6. To see the Gate Operations, choose the Options | Variables menu item
- 7. Select the "Group #1 Opening" variable

8. You can follow along and see how the gates are operating

2.6.6 Evaluate Results

- 1. Go to the Unsteady Flow Analysis dialog
- 2. Choose the **Options | Output Options** menu item

3. Turn on the Computation Level Output

HEC-RAS - Set Output Control Options

Restart File Options Detailed Log Output Computation Level Output Options HDF5 Write Parameters

- 📃 Echo input hydrographs
- ☐ Write parameter options and initial conditions
- Write detailed log output for debugging: Optional specified time window (entire simulation is used unless specified)
- 4. **Re-compute** the simulation
- 5. Choose the **Options | View Computation Log File** menu item
- 6. Evaluate the Rule Operations. You can find where the Rules were evaluated by searching the text file for "Rule Set"

		Solving for Time Window =	6.88611	to	6.88750 Hours
	Rule Set	for Street			
0004		HW_Stage = 4.931848			
0005		TW_Stage = 3.389156			
0007		Timestep = 0.0013889			
0008		Timestep = 5.			
0015		Done = 0.0			
0018	True	0.0 = 0.0			
0019	True	4.931848 > 4.089156			
0020		Time_HWDiff_gt_0.7ft = 125.			
0026	True	125. > 120.			
0027	SET	Gate.Opening Group #1 = 3.			
0029		Time_TW_gt_3.5ft = 0.0			
0030		Done = 1.			
0035	False	1. = 0.0			
0051		GateOpening = 0.0			

Each line of the Rule Operation is enumerated in the left column. The result of each evaluation is shown in the next column, follow by the evaluation. For the timestep evaluated in the figure above, the Gate evaluation resulted in the decision to set the gate opening to 3ft. The Log File in concert with the Hydrograph Plots allow you visualize how HEC-RAS evaluated the operation during the simulation.

2.7 1D Sediment Modeling Tutorial

Project Files (See Solution Files at the End)

 $\{ \}$

Sorry, the widget is not supported in this export. But you can reach it using the following URL:

http://youtube.com/watch?v=d416442IC4c

Sorry, the widget is not supported in this export. But you can reach it using the following URL:

http://youtube.com/watch?v=9YiL3Men9as

Sorry, the widget is not supported in this export. But you can reach it using the following URL:

http://youtube.com/watch?v=X9xikwi0v-U

2.8 Modeling a 2D Half Pipe with Non-Newtonian Fluid

Sorry, the widget is not supported in this export. But you can reach it using the following URL:

http://youtube.com/watch?v=cZDqpKYO7Ek

Sorry, the widget is not supported in this export. But you can reach it using the following URL:

http://youtube.com/watch?v=kAZhWw-j0HI

Sorry, the widget is not supported in this export. But you can reach it using the following URL:

http://youtube.com/watch?v=DvicPxAR9gg

2.9 Debris Flow Workshop

2.9.1 Full Workshop (Start with a Shape File)

2.9.2 Abbreviated Workshop (Start with Terrain)

2.9.3 Solution

3 Reference Documents

Торіс	Supporting Material
HEC-RAS Verification and Validation Document This document contains analytical and textbook datasets, laboratory datasets, and real world data with observed measurements. HEC-RAS computational results are compared to all of the datasets to verify the solutions of the equations, and to validate HEC-RAS's use for a wide range of computational problems. (Updated September 2020)	D-52_HE2020.pdf
Benchmarking of the HEC-RAS Two- Dimensional Hydraulic Modeling Capabilities This document summarizes how the HEC-RAS software performed in the two-dimensional modeling benchmark tests developed by the United Kingdom's (UK) Joint DEFRA (Department for Environment, Food, and Rural Affairs) Environment Agency. (Updated April 2020)	D RD-51 HE2020.pdf
Modeler Application Guidance or Steady vs. Unsteady and 1D vs. 2D vs. 3D Hydraulic Modeling All models, numerical or scale-physical, are simplified representations of the real world (prototype). Fortunately, there are numerous practical engineering problems for which simplified numerical models of the prototype are sufficient to provide usable descriptions of system behavior. The challenge for the modeler is to select an appropriate model to solve their particular engineering problem while recognizing that the model is not a perfect representation of the prototype. Selection of a model begins with developing an understanding of which aspects of the complex, real-world system are most important to the engineering problem being addressed. The purpose of this document is to provide entry to mid-level hydraulic engineer's with guidance on when to use Unsteady Flow modeling instead of Steady flow modeling; and how to select between one-dimensional (1D), two-dimensional (2D), or three-dimensional (3D) modeling for a given problem	TD-41.pdf

Торіс	Supporting Material
Using HEC-RAS for Dam Break Studies This document provides information on how to use the HEC-RAS (River Analysis System) software when performing a dam break analysis. The document presents the unique hydraulic modeling aspects that are required, plus routing the inflow flood through a reservoir; estimating dam breach characteristics; and, downstream routing/modeling issues	TD-39.pdf
BSTEM Technical Reference and User's Manual The HEC-RAS software has included mobile bed capabilities since version 4.0. These capabilities compute vertical bed changes in response to dynamic sediment mass balance and bed processes. However, many riverine sediment problems involve lateral bank erosion that does not fit the current computational paradigm. The Bank and Stability Toe Erosion Model (BSTEM) developed by the United States Department of Agriculture Research Station is a physical based model that accounts for the dominant stream bank processes but requires an intermediate level of complexity and parameterization.	HEC-RASnual.pdf
Comparison of One-Dimensional Bridge Hydraulic Routines from HEC-RAS, HEC-2, and WSPRO The hydraulics of flow through bridges is an important aspect of computing water surface profiles. The computation of accurate water surface profiles through bridges is necessary in flood damage reduction studies, channel design and analysis, and stream stability and scour evaluations. There are several one-dimensional water surface profile computer programs available for performing these types of computations. The purpose of this study was to evaluate the effectiveness of the new bridge hydraulics routines in HEC- RAS at sites with extensive observed data, and to compare HEC-RAS to HEC-2 and WSPRO, with respect to bridge modeling performance.	RD-41.pdf

Торіс	Supporting Material
Flow Transitions in Bridge Backwater Analysis Bridges across floodplains may require special attention in one- dimensional hydraulic modeling if they cause severe contraction and expansion of the flow. The accurate prediction of the energy losses in the contraction reach upstream of the bridge and the expansion reach downstream of the bridge using one-dimensional models presents particular difficulty. Modeling these reaches requires the accurate evaluation of four parameters: the expansion reach length (Le), the contraction reach length (Lc), the expansion coefficient (Ce), and the contraction coefficient (Cc). This report presents research conducted by the author to investigate these four parameters through the use of field data, two-dimensional hydraulic modeling, and one-dimensional modeling.	RD-42.pdf
Making Your HEC-RAS Model Run Faster The purpose of this document is to provide guidance on model modifications that can be made to an HEC-RAS unsteady flow model (1D and/or 2D) in order to improve computational speed, while maintaining model accuracy.	Making HEaster.pdf

4 Web Resources

Resource	Web Link
The National Map Viewer The National Map is a collaborative effort among the USGS and other Federal, State, and local partners to improve and deliver topographic information for the Nation.	USGS - National Map Viewer ⁷
Spatial Reference A great website for getting a coordinate system for your project	spatialreference.org ⁸
National Land Cover Database The National Land Cover Database (NLCD) provides nationwide data on land cover and land cover change at a 30m resolution with a 16-class legend based on a modified Anderson Level II classification system. NLCD 2019 represents the latest evolution of NLCD land cover products focused on providing innovative land cover and land cover change data for the Nation.	www.mrlc.gov/data ⁹
USGS Land Cover USGS provides land cover data for the United States in raster or vector (shapefile) format.	https://water.usgs.gov/GIS/dsdl/ ds240/index.html

⁷ https://apps.nationalmap.gov/viewer/

⁸ http://www.spatialreference.org

⁹ http://www.mrlc.gov/data

Resource	Web Link
Roughness Characteristics of Natural Channels Color photographs and data are provided for 50 stream channels for which Manning's roughness coefficients have been determined.	USGS Water Supply Paper 1849 ¹⁰
Determination of Roughness Coefficients for Streams in Colorado This report investigates Manning's roughness coefficients for steep streams.	USGS Report 85-4004 ¹¹

¹⁰ https://pubs.usgs.gov/wsp/wsp_1849/html/pdf.html 11 https://https//pubs.usgs.gov/wri/1985/4004/report.pdf